[ISSN 1432-5454

| The Magazme about QL, QDOoSs,
Smclalr Computers, SMSQ...

T Volume 14 L
¢ Issue 2
o Dec. - Feb.
4 2009/10

Start of a new series:
Tony Tebby’s view of | Vl@ﬂﬂa ﬁ

The developmenf in Details on the
computing over the last pa ge’
past 25 years - the —
different paths of many dlfferenf
systems in the past and foday!

3 Editorial

4 News

FEATURED STORY

8 QL Firmware Bugs Myths - Part 2
; Tony Tebby
15 QL and Mac are 25 Tony Firshman
19 A tricky Trap
21 25 Years - Part 1

32 QL-Aided Design - Part 2
Simon Balderson

George Gwilt
Tony Tebby

36 LETTER-BOX
37 Random & P!
38 25% EXTRA

Stephen Poole
Geoff Wicks

Jochen Merz Software 39
Quanta 33
QuoVadisDesign 1

L.

" The deadline for
the next issue
is the 15th of
February 2010.
Please send
material as soon
as possible!

German office & Publisher:

Jochen Merz Software Tel. +49 203 502011
Kaiser-Wilhelm-Str. 302 Fax +49 203 502012
47169 Duisburg email: smsq@-m-s.com
Germany email: QLToday@j-m-s.com
Editor:

Geoff Wicks Tel. +44 1332 271366
Flat 5b email: gtwicks@btinternet.com
Wordsworth Avenue email: QLToday@j-m-s.com
Derby DE24 9HQ

United Kingdom

Co-Editor & UK Office:

Bruce Nicholls Tel +44 20 71930539
38 Derham Gardens Fax +44 870 0568755
Upminster email: gitoday@q-v-d.demon.co.uk
Essex RMi4 3HA email: QLToday@j-m-s.com
United Kingdom

QL 7eday is published four times a year, our volume
begins in June. Please contact the German or English
office for current subscription rates or visit our
homepage www.QLTODAY.com.

We welcome your comments, suggestions and
articles. YOU make QL Zeday possible. We are con-
stantly changing and adjusting to meet your needs
and requirements. Articles for publication should be on
a 35" disk (DD or HD) or sent via Email. We prefer
ASCIH, Quill or text87 format. Pictures may be in _SCR
format, we can also handle GIF or TIF or JPG. To
enhance your article you may wish to include Saved
Screen dumps. PLEASE send a hardcopy of all
screens to be included. Don't forget 1o specify where
in the text you would like the screen placed.

QL 7eday reserves the right to publish or not publish
any material submitted. Under no circumstances will
QL 7Zeday be held liable for any direct, indirect or
consequential damage or Joss arising out of the use
and/or inability to use any of the material published in
QL Zeday. The opinions expressed herein are those
of the authors and are not necessarily those of the
publisher,

This magazine and all material within is Copyright
2009 Jochen Merz Software unless otherwise stated.
Written permission is required from the publisher
before the reproduction and distribution of any/all
material published herein. All copyrights and trade-
marks are hereby acknowledged.

If you need more information about the UNZIP program
which is used by our BOOT program to unpack the
files, we suggest that you visit Dilwyn Jones’ web site
where you find more information about lots of inter-
esting QDOS software and INFOZIP at
hitp://www.dilwyn.me.uk/arch/index.htm|

The party is over Or is it?

As we come to the end of the QL's silver jubilee year, we can look back with a degree of
satisfaction. The Quanta committee led the way and managed to celebrate the QL's and
Quanta’s own silver jubilee well within the budget it had set itself. (Support from the
members was, however, a little disappointing) Urs Konig secured extensive QL coverage in
Personal Computer World and then organised the continental celebration. Rich Mellor was
responsible for much of the similar detailed QL coverage in Retro Gamer. What other com-
puter from the 1980s, apart from the Spectrum, could have achieved such media attention
25 years on?

This year we have looked back, but now we have to look to the future, and it is a future
with changes and uncertainties.

The party is probably over for QL shows. For the second year running Quanta has been
able to run only one show, and from now on the Quanta committee may have to organise
its AGM and workshop itself. Last year the ltalians and this year the Swiss have organised
one-off shows, but, in a sense, both were nostalgia events organised by members of the
previous QL groups. (However there is now a possibility of another show in Austria next
year) This year for the first time in the history of the QL there has been no meeting in the
Netherlands because of health problems of the organisor. A similar situation led to the
ending of the North American shows three years ago.

Workshops provided the showcase for traders, but last year two UK traders ceased active
trading. Nevertheless another UK trader has exploited the new possibilities of the internet.
He not only makes a profit on his QL activities, but in the last two years has provided
Quanta with a quarter of its income by trading on their behalf

The QL-users email group is also changing. Over the last few months there have been
fewer detailed discussions and the group has become much more of a helpline and infor-
mation point than formerly. This is a good use of the group but it is becoming more tech-
nical giving both advantages and disadvantages for its future.

Quanta has ambitious plans for its website and is working hard to realise these, but are we
about to see two tiers of Quanta membership? How do you cater for those members, and
there are thought to be many, who have loyally paid their subsciption for 25 years, but
who are now very elderly and have no desire to become part of the internet age?

The internet may be the secret to the survival of the QL. We are an international commu-
nity. The UK currently has the largest number of QL-ers, but how long will this remain so? If
Quanta is to survive it may have to become a much smaller internet based organisation in
which a concept of members and non-members of Quanta could become increasingly irre-
levant. How long will it be before paper QL publications are no longer viable? The internet
will provide the essential means for us to keep in touch with the advantage of being both
cheap and instantaneous.

Change is taking place, but that does not mean there is no future for the QL. It is how we
adapt to that change that could determine the nature of the QL's survival.

NEW SOFTWARE DATABASE

QL trader Rich Mellor has started an ambitious
project to catalogue and preserve as many com-
mercial QL programs as possible, a task he sees
as important to ensure the continued future of the
QL. Where possible the intention is to provide the
programs in a suitable form to run on one of the
PC QL emulators. It will also be a resource for QL
users who have a legal copy of a program that
will no longer load.

In Rich's own words:

"We have managed to get most of the software
from microdrive onto a PC in a format for use
with Q-emulator in the main, although it does
help us to make fresh working copies on micro-
drives and disks. The idea behind this, is to en-
sure those users who have an original copy, but
cannot get it to load anymore, will be able to
purchase a working copy on disk or microdrive,
or for use with Q-emuLator from our website
(provided that they can prove ownership of the
original program).

As part of this work, we are also updating the
QL Wiki to include more information on the soft-
ware, hardware, books and traders that have
been around since 1984 We would welcome
more input into the traders and personalities
section in particular if anyone knows the history
of any of the software and development houses
(however short lived).

Lots of work to do in updating the software
details, but we hope that this will address one of
the main issues when people talk about the
Sinclair QL - namely they are uncertain what
software was produced for itll"

First reactions to Rich's announcement showed
that there was some confusion about the wiki.
Several QL-ers assumed that he was referring to
the QL section on wikipedia and not to the
dedicated QL wiki on his own site. Rich set this up
early in 2007 mainly as a software resource to
give more QL information than was possible on
wikipedia and later expanded it to a more general
QL wiki. The launch of the wiki was reported in QL
Today together with a review (Vol. 11 issue 5).

As several QL-ers pointed out the wiki still has
some serious omissions. The wiki concept is that
almost anyone can contribute, but so far Rich has
had to do the bulk of the work himself The wiki is
to be found at:

www.rwapadventures.com/ql-wiki/

system desigried for e biskBss malket, Some o7ihe
ames Siftware, which mate e most
n, or’8 COIours fn 256X 256 resoluion.

IR
‘Higher streen resoluton, witl

Rich has also placed the software database on
wikipedia.

Maks

List of Sinclair QL software
pediz

Frozm

This iz 8 fist of sofy

© | Hotetior. Program n

Done: : 45 Irteenst foes EID0%. T

The QL has a second dedicated wiki set up last
year by QL Today writer Norman Dunbar This is
biased more to the technical and programming
side of the QL and can be found at:
www.qdosmsq.dunbar-it.co.uk

Rich has been able to re-release some QL games,
one of which was by popular request..

"Due to popular demand, and with the consent of
Jochen Merz, we are pleased to announce that
we have re-released an old QL arcade game,
Pengi, which was written by Jochen Merz and
previously released on the Gigasoft label.

In this colourful game, you control a small Pen-
guin {Pengi) as he tries to survive the Antarctic
climate. Faced with deadly snobees all around,
the only way to survive is by pushing ice blocks
onto the snobees and squashing them, before
they touch Pengi. You can also collect diamonds
to gain additional points.

This increases the range of arcade games stil
available commercially from RWAP Software -
hitp://www.rwapsoftware.co.uk/games.html

Rich has also re-released Cuthbert in Space and
QL Hopper.

Other programs that he is attempting to rescue
include Viewpoint by Rubicon, Concept 3D by Tes-
seract Software, QL Gardener by Gordian Com-
puting Services and CAD PAK by Datalink Sys-
tems. As a teaser he adds that Britain's main con-
sumer protection organisation, the Consumers
Association, once released software for the QL.

Finally a piece of late news from RWAP They have
launched a new website: http://selimyretro.com

MORE SOFTWARE

DILWYN JONES

Once again Diwyn has a long list of new and
updated items.

ZIP MANAGER

I've added an update to my Zip Manager program
to the Archivers page on my website.

Version 1.06 of this program fixes a bug in the
Delete command, which sometimes got confused
between " and '_’ flename extension separators.
It's available to download free from
http://www.dilwyn.me.uk/arch/index.htmi

MIRACLE MIDI INTERFACE

Miracle MIDI Interface - for anyone who acquires a
Miracle MIDI interface for the QL without the soft-
ware disk {a program called Tracker by Dan Gaf-
fey), it can now be downloaded from the Misc
software page on my website. Note that the soft-
ware can only be used with the Miracle MIDI inter-
face, it cannot be used with any other interface. |
am grateful to Derek Stewart for locating a copy
of the software for me.
hitp://www.dilwyn.me.uk/misc/index.htmi

A more general purpose free MIDI software
package for a QL is Al Boehm's Midi Player 2
package, available from
http://www.dilwyn.me.uk/sound/index.html

PCB CAD

I've just added the latest update to Malcolm Lear's

PCB Cad program to my website. Here are details

of revisions made since the last version available

(6.63):

6.64 Corrected minor errors in SMDLlib lbrary.
Corrected operation of window resizing.
OUTLN is just optional.

6.65 16-09-09 Layer names can now be
changed.
Dark white which was displayed as mid
grey now changed to light grey and dark
black which displayed as black now
changed to dark grey.
File access tests using DEVICE_STATUS
changed to be compatble with older QL
systems.
Later a further upgrade to version 6.67 was an-
nounced.
The program is a 1.22MB download from the
Graphics page on my website:
http://www.dilwyn.me.uk/graphics/index.htmi
As late news as QL Today was finalising the news
pages, Dilwyn announced the first pointer version
of the program.

DIGITAL C SOURCE

With grateful thanks to the author, Gerry Jackson,
the source files for the Digital C SE compiler
system are now available from the Languages
page on my website.

Once you have downloaded it, please read the
README HTML file it contains.
http://www.dilwyn.me.uk/language/index.html

EDDICON AND SPRLIP

Two new free programs from Duncan Neithercut
were recently added to my website.

Eddicon is an icon/sprite editor to create sprites in
mode 64 or mode 4 or to save them as .bmp for
use in Wolfgang Lenerz program. Existing sprites
in a variety of modes such as 32 and 33
(QXL/QPC and Q40/Q60) can be loaded and
edited. Or sprites can be created from scraich.
The editor has a number of novel features includ-
ing an independently editable alpha channel, undo
function and a simple merge to combine 2 sprites
of the same size, and other features such as
home directory and colour theme awareness. It is
in an alpha/beta status but is fully usable, but
there may stil be bugs due to the complexity of
the program, that require additional users to
identify.

Complementary to Eddicon is a program to con-
catenate a list of sprites into a single library file
that can be loaded by LRESPR or linked into a
Qliberated program using the REMark $$asmb
directive. The addresses of the sprites in the libra-
ry may be accessed through a single keyword
that is part of the library file. This makes it straight-
forward to add multiple high colour sprites to QIi-
berated programs. Eddicon uses this system for
its modeb4 icons although the sprite library
maker program will work with sprites of any mode
and a mixture of modes in a single file.

“News{—

Ny

Both packages may be downloaded from my
website at
http://www.dilwyn.me.uk/sprites/index.html

GEORGE GWILT UPDATES

George has announced the following updates to
his programs:

| have put on my site amended versions of
NET_PEEK and GWDISS. The amendments cor-
rect the disassembly by GWDISS of some Cold-
Fire instructions and add the disassembly of all
ColdFire instructions to NET_PEEK. Without this
change the previous version, 3.39, of NET_PEEK
could crash while disassembling.

A new version of UCONFIG which produces con-
fig blocks for S*BASIC, Assembler and C pro-
grams. The new version allows a full alteration of
an existing config block from the input of a _INS
file (which is the config block for an S*BASIC pro-
gram). The output is a full set of files for all three
types of program S*¥BASIC, Assembler and C.

| wrote the new version because | was fed up
with having to reproduce from scratch all the old
information every time | wanted to add an item to
an existing block. This might therefore be of use
to other people as well.
http://web.ukonline.co.uk/george.gwilt/

OS X Q-emulator VERSION

Daniele Terdina has started work on an OS-X
version of Q-emuLator although he says that it is
still far from completion. However he has released
a screen shot. More details can be found at:
http://www.terdina.net/ql/MacQL.htm|

SGC BATTERIES

Several QL users are finding their Super Gold
Card battery is running low and supplies of the
original batiery are now unavailable. A symptom
of a low battery is an inaccurate time and date
when switching the machine on.

Davide Santachiara has offered some help with
this problem:

'l replaced two batteries both on a GC and a
SGC of a friend of mine thanks to a standard
CR2032 3V lithium battery which the ltalian QL
hardware expert Romaldo Parodi, was able to
get with presoldered pins on it. Then it was quite
easy to solder a small additional wire to reach
the two pins where the original battery was
placed (actually four pins are present but only
two are used).

| have shot some pictures of the procedure, if
somebody is interested in getting them just
email your private email address.”
d.santachiara@libero.it

WEBSITE MOVE

There are persistent rumours that Geocities, who
host Davide's webpages, is shortly due to close.
Davide has moved the webpages to:
www.sinclairgl.it

The site hosts the Ergon Development software
including the Spectrum emulators. At the time of
Davide's message he had not checked that the
new site was fully working correctly, but hoped
shortly to do so.

ONLINE MANUALS

Following the Swiss QL meeting Marcel Kilgus has
placed the "QDOS SMSQ Reference Manual” and
the "QPTR" manuals online in PDF format.
hitp://www.kilgus.net/smsqe/development.html

WITHIN BUDGET

Quanta has celebrated its silver jubilee year well
within the budget it set itself. Using the 2005 QL is
21 show costs as a guideline it had budgeted
£3,500 for the silver jubilee events. Provisional
figures show the actual cost to have been £3,000
and as icing on the cake this figure includes the
£572 cost of the special silver jubilee issue of the
Quanta Magazine that had not been included in
the budget.

Quanta has also been looking at the future of its
website and in particular at systems for expanding
it and ensuring up to date content. At a recent
committee meeting two systems, Joomla and
Typo3, were demonstrated and the committee
opted for Typo3. The final content of the website
and the division between public and restricted
content has yet to be decided. It is also not
known how quickly changes will be made to the
site.

Members can siill pay their subscription via the
website and PayPal. Some members have expe-
rienced difficulties doing this in the past. The fink -

on the top left corner of the home page - was
seen by some as being an advertisement for the
facility. This is an animated graphic showing three
different pictures. In our illustration it has the
message "Join QUANTA or renew you subcription
online”. Alternatively click "Quanta Magazine™ on
the home page menu and then "online subscrip-
tions”. During the transaction PayPal places a
cookie on the computer and users with high secu-
rity settings may have to reduce these tempo-
rarily.

QUANTA

e

QUANT

|
|

A

Tinkerers Association

staling the BBC officials while his staff were
desperately tweaking the prototype machine to
make it work.

Later scenes showed a frustrated Clive Sinclair in
despair because his computers were seen as
games machines and Chris Curry jealous of Sin-
clair's success in capturing the games market.
Sinclair went upmarket and this is where the QL
made an appearance, and Curry downmarket with
a cut down version of the BBC computer, the
Electron, as a games machine. By now the boom
was over, the QL was a
commercial failure and
disaster loomed for
Acorn. Curry took a

massive order from a

Infornmation on the Group

high street retailer, but

Join QUANTA or renew
your subscription online

For the second year running Quanta has only
been able to run one show. Next year it plans to
hold the AGM in April at a venue in the Midlands.

MICRO MEN

Although not a part of the QL's quarter centenary
there was much interest in a BBC television play,
Micro Men. This dramatised the 1980's battle bet-
ween Clive Sinclair and Acorn Computer's Chris
Curry - formerly Sinclair's right hand man - to
obtain a lucrative contract for the BBC school and
home computer. Partly based on fact and partly
on fiction the play left the QL viewer frustrated by
giving little indication of which bits were true and
which made up. Clive Sinclair was portrayed as an
l-tempered man obsessed with developing an
electric car and whose fatal weakness was an un-

willingness to listen to others. Chris Curry came
over as the better businessman and boss who
won the BBC contract. However it was not all plain

saling and one delightful scene showed him

faled to get it
confirmed in writing so
«== that he was left with a
warehouse full of
120,000 unsaleable

Electrons.

The drama ended rather cruelly with Sinclair
peddiing along the road in his C5 and being over-
taken by a Microsoft juggernaut.

The play was a mixture of fact and fiction, but for
a detailed and accurate account of the QL's deve-
lopment the best place to look is the current
volume of QL Today.

The press reaction to the launch was enthusiastic or even ecstatic, as
shown in the articles that appeared in February. Within Sinclair, fore-
boding was a better word for the mood. It was five days before | found out what was wrong: 28 day
delivery had been promised, the hardware was far from ready, SuperBASIC was untested and had only a
minimum of procedures and the state of the Psion suite was a complete unknown.

[immediately went to see Sir Clive to tell him that | would stay on only until QLs were delivered to custo-
mers. Then | cornered one of the directors to complain about the launch. He explained to me that the
commitment to 28 days delivery had been necessary as a number of senior Sinclair personnel had
bought Sinclair Research Limited shares when Sir Clive sold his 10% and, with the various delays to new
products, their shares had lost lot of their value and they had no choice but to launch the QL and take
orders to boost the share price. This sounded to me to be rather dishonest, but the director concerned
considered it to be rather astute.

When QLs were not delivered within 28 days, the brown stinky stuff hit the fan. A journalist, Guy Kewney,
who had not been taken in by the launch (he knew an empty box when he saw one) was very suspi-
cious. He wrote an article explaining that if a director of a company made a false statement to mani-
pulate the share price of that company, then this was fraud. When news of this article reached Sinclair
the chaos transmuted into panic: clearly someone had leaked the truth to the press - the directors
could not believe that a journalist could have worked it out for himself. | received threats from the
directors of the company. | found this more offensive than worrying. Despite the dishonesty of certain
directors, and the weakness of others who refused to stand up to them, Sinclair Research Limited was
my employer and | owed the company my loyalty.

What did happen

| can only give the true story for that which concerned me directly. At that time | had to assume, and |
stil have to assume, that anything | heard about the progress on the QL from anyone else at Sinclair
{other than Jan Jones who was with me) was at best mere rumour. Moreover, word was out that talking
to me was not a good idea if you wished to continue your career at Sinclair (I had already resigned so |
was now an outsider). This made project coordination tricky. | moved out to the Milton Hall building site
{the future Sinclair Laboratories) with Jan Jones.

One of the well founded stories was that when the QL was launched with a promise of delivery in 28
days, there were no working prototypes. | think | can confirm this. | had never seen one, and some time
later | was asked by one of the directors "when will there be a stable version of the software?” | think my
reply was along the lines "about a week after we have a stable specification and a stable hardware
platform™ - "Ah, in that case when can we have a test version” - "About a week after | get a prototype” -
"You must have a prototype, the machine has been launched". It appears that | was not the only naive
person around.

At which point, this director proved to me that there was at least one senior person in Sinclair who was
not panicking. He managed to obtain all the bits necessary to build a QL. | obtained a wooden panel and
some screws from elsewhere in the building site and assembled the bits rather like an exploded
diagram. Amazingly, it showed signed of life when | fitted an EPROM set (to the external EPROM card
that was later to turn info the infamous "dongle” or *kludge’) and turned the power on. This was THE
prototype machine.

But | soon understood why it there was no other full working prototype. When the power supply was
delivering enough current to keep the computer working, the ripple was so great that the on-board
regulator dropped out. | changed the power supply and added large smoothing capacitors. (By using my
own power supply and having an open QL, I missed out on the exciting story of increasingly powerful
power supplies, on-board regulators that overheated if you put the QL PCB in its case, the machine

crashing when a Microdrive motor was started, etc). | then poked around a bit before adding lots of
decoupling capacitors. This seemed to improve the stability.

So, I had my prototype. Did | manage to finalise the operating system and drivers in a week, so that the
system could be tested for another week before committing the software to ROM? Not quite.

The Microdrives and the “Notwork”
The first Microdrive problem had cropped up a month before the launch, before there was a full
prototype.

Microdrive / network problem 1

| had been told that there was a slight problem on the first PCB layout. It was more than a slight
problem. Several months before, when the block diagram for the ZX83 was being converted to a
complete logic diagram, the data lines on the future ZX8302 chip were connected to the RAM bus
instead of the processor data bus. The ZX8301 glue logic was also designed with the ZX8302
enable and handshake signals derived from the RAM bus timing signals and not the processor bus
timing signals. Why was this important? The RAM bus is shared with the display which steals a block
of 8 memory cycles out of every 12 cycles during display lines. The ZX83 relied on the processor for
critical timing operations that would be carried out in hardware on more normal systems. You cannot
perform critical timing operations if you cannot determine how long each instruction will take. The
timing jitter” for this design could be reduced by ensuring that the instruction loops accessing the
ZX8302 were a multiple of twelve cycles long. For the Microdrives this was possible although it
reduced the margins a bit. For the network, however, the nearest to the Spectrum timing was
7x12=84 cycles - not close enough. In addition, the residual jitter (2.5p), on both transmit and receive,
gobbled up half the timing margins. The network could be neither Spectrum compatible nor reliable.

Microdrive problem 2

When [finally had my own hand-built prototype QL, | was anxious to try out the fixed Microdrive
drivers. When | tried the Microdrives for the first time (now at launch + 3 weeks, | think) the drivers did
not work at all. Format a Microdrive and all you got was "format failed”. The code was timing critical so
it could not be traced, and after spending a lot of time hunting through the code for potential errors, |
tried a scope. Looking at the signals | thought that it might not be a QDOS (the new name for
Domesdos) driver bug, it might have had something to do with the signal to noise ratio from the
Microdrive head amplifier being 0 - no signal, all noise. Ben Cheese provided me with a fix - a
capacitor to be soldered onto the Microdrive PCB. Another QDOS bug fixed - without changing a
single byte. But why did my, straight from production, Microdrives not have that capacitor?

Microdrive / network problem 3

And then the next problem with the Microdrives. The driver sometimes lost data - it seemed that it
was just not fast enough for the job. | had calculated the execution time of the Microdrive read
routines down to the nearest cycle. | could not see where my calculations were wrong. | struggled
with this for a couple of days before Jan, who had no electronic design experience, came up with the
solution that had eluded my obviously very softened brain. "Why does the Microdrive only work
reliably in the momning?” she said, all innocent like. Ahl The real question was "Why does the
Microdrive stop working when the QL has been on for a little while?”. | set off to Sinclair's labs and
came back with a can of freezer spray. It did not take long to discover that, as long as there was a
nice coating of white frost on the ZX8301 chip, | could read data reliably from the Microdrives. But the
ZX8301 chip has nothing to do with the Microdrives, does it?

It turned out that there was a timing race in the ZX8301 chip design: when it warmed up, the RAM bus
contention circuit failed to register a request for access to the bus until it was too late. This problem
would have probably gone undetected, for the whole life of the QL, had it not compounded the
ZX8302 access timing fault described above: the 12 cycle workaround could never work on a warm
QL. Fixing the hardware properly would take several months for a new ZX8301 design to get into
production and the QL was due for delivery the next week. Unfortunately the hardware workaround,
which involved wiring the data bus directly to the ZX8302 pins and adding another spider (effectively
the D14 build solution), would not solve the problem completely: although the processor would still run
more slowly when the ZX8301 was hot, this would only occur when it was accessing RAM.

The software workaround for this double ZX8302 timing fault was to slice one or two cycles off the
ZX8302 read/write loops. This worked more or less for the Microdrives, but it eat up another half of
the timing margins for the network: the Spectrum team renamed it "The Notwork’. However, all would
be fixed on the next version of the PCB (joke).

Microdrive problem 4

And then the next problem with the Microdrives. All of a sudden, | got a report that Microdrive access
was very slow (several minutes to read a modest sized file) on the first pre-production QLs. | tracked
this down to an unnotified modification that had been made to the Microdrives themselves. The origi-
nal specification for the Microdrive had the total tape stop and start distance less than the length of a
sector. The original aim of the device driver was to minimise the time for which the drive was running
to minimise the tape wear and power consumption (the ZX83 was supposed to be battery powered,
remember). The sectors were laid out with a one in two interleave so that if the drive was stopped
after reading a sector, the tape would stop on an “uninteresting” sector and then the next sector to
be read would hopefully be the next sector of the file. Once a file had been found, access was
relatively fast. However, in a vain attempt to prevent Microdrive cartridges self-destructing, someone
decided to try slugging the motor turn on and turn off - increasing the total stop and start distance to

nearly 10 sectors.

High speed photography showed, however, that the acceleration and deceleration was unaffected, the
modification merely delayed stopping and starting, doing no good at all - but plenty of harm. Firstly, it
greatly increased the running time of the Microdrives and, therefore, tape wear Secondly it ensured
that, for a stop/start scenario, the next sector would be missed unless it was at least ten sectors
away, reducing serial read speeds by a factor of five. Thirdly it increased the surge current when the
Microdrive motor was turned on (current surge = voltage dip = QL crash).

ICL rejected this modification for the OPD and it was not tried on the Spectrum (see Wikipedia "ZX
Microdrive’). So why was this purely harmful modification retained? Was it sheer idiocy or was it a
deliberate attempt to delay the release of the firmware?

I had to spend most of a week rewriting the Microdrive drivers to implement a radically new strategy
to claw back some of the performance lost by this modification. "the software is still not ready for
shipping and we are well past the 28 days”. Even with the rewritten drivers, the performance of the
QL Microdrives was still well below that of unmodified Spectrum Microdrives. Moreover, in the rush,
there was an serious oversight: the QDOS memory manager assumed that the fiing system could
work with only one buffer The new pre-fetch strategy required a minimum of two buffers. Oops.

Other problems

Of course, there were many other hardware problems that | had to deal with. This should be consi-
dered normal. If there is a software workaround for a hardware fault, this is almost certainly cheaper
and quicker than a hardware fix, although it will often be a less than complete cure.

Meanwhile, back on the farm

After the launch, Jan Jones was busy trying to work out what she should put into the SuperBASIC for
the QL and, possibly more important, what to leave out. With many regrets "WHEN' fell by the wayside
- that would shave a good month off the timescale, but there was no shortage of suggestions for the
priorities for adding Spectrum compatible features. Jan, therefore, took the very reasonable course of
"code it quick and test it". After the first totally untested version (FB) was made available for indepen-
dent testing, the bug reports and "wish lists” came flooding in. As | remember it, in addition to coding
new features on the fly, she was also clearing up to 20 bug reports a week and new versions were
made available for testing almost weekly. The shakedown was rapid with less than one new bug for
every ten new functions. The flow of bugs reports dried up when we made AH (1.02) available for
testing and we called a halt to further changes to SuperBASIC. Starting with AH, we changed over to
"code inspection” (reading through all the code written over the previous 9 months looking for potential,
or real, problems.

ant Information
y Services

040 YADIS .
DES G Teependant o maton QL/QDOS/ISMSQ/E Software

We

Quo Vadis Desion sells software for the Sinclair Quantum ? GVD QL News Blog - keep up to date

Leap computer {Qf) and variants inchuding a new 05 called News Blo)

24/ 0%/ 2000

The O is a compuder in its 25th year Anmersary.
s . ¥ Quo Vadis Design Website Launched
03703 2009

Software emulations of the QL now exist which canrunon a

Horae | Producis | Subperd | Cornpany | Contact | Privany

Special Offers available from
Jochen Merz Software for its
25 years in QL Trading

Check the QL News Blog on
our website for updates.
www.ql-qvd.com/blog

9leM}jos J/OSINS/SOAD/TD

The final shakedown
Numerous ‘bug lists" have been produced for the QL firmware. These show a number of changes
between AH and JM (1.03).

1. A "not-a-bug” was found in the SuperBASIC interpreter by code inspection. Floating point arrays
were limited to 65536 elements. As there were no QLs with enough memory to store an array of
65536 floating point numbers, this limitation had not shown up in testing.

2. A serious bug with workaround was found in the OS core by testing. Opening a channel to a file
that was already open left the file pointer pointing to the start of the "distributed directory entry” in
the file and not the start of the data in the file. This was an oversight made when patching the
filing system to improve the recoverability of files on a damaged Microdrive cartridge.

3. A serious bug (no workaround) was found in the SuperBASIC interpreter by code inspection.
String comparison in SuperBASIC compared numerical values embedded in strings by decimal
value (it was to take Microsoft a decade to catch up with this, while UNIX still has not even
managed to get to grips with upper and lower case). Unfortunately the SuperBASIC string
comparison thought that " was the same as 0 (as well as 0.0, .0, or 0).

4. A fatal bug (no workaround) was found in the OS core by code inspection. Opening a channel for
a job that does not exist crashes the system. Readers used to the exiremely restrictive UNIX and
Windows environments might wonder how a job could open a channel for another job and why
you would want to do it. There is a good reason.

5. A fatal bug {no workaround) was found in the SuperBASIC interpreter by testing. The buffer
handiing for INPUT data was less than ideal and if a line longer than 128 characters was typed (the
default buffer length) bizarre things could happen.

A week’s independent testing of version AH had thrown up 2 bugs and a week's code examination had
identified 3 bugs (according to the best lists | can find. | am sure that there was a third bug in the AH OS
core that | found and fixed, but | cannot remember what it was and it must be so obscure that no-one
has ever reported it publicly).

By this time, no-one was interested in delivering SuperBASIC as a base version with extensions, so the
JM version, with the complete set of procedures and functions and all the graphics, was handed over
for committing to ROM. This must have been sometime in March. Code examination and testing of
continued, but no more changes were made to the release version and, over the next couple of weeks,
nothing was found that would have merited recalling JM and replacing it by TB, the next stable version.

Subsequent user experience has shown that, apart from my monumental error of patching both
Domesdos and SuperBASIC to get them to fit together, JM was fairly sound and the bug fist built up
over the first year, while not as good as it should be (no bugs at all), was quite respectable for software
finished under what might be described as difficult conditions.

With JM released and TB "standing by" for any corrections, we started a new development series with
the JS version. Jan had started working on adding the WHEN constructs when we heard that QL
shipments had started and that customers would soon be receiving their long awaited QLs. My job
finished, | notified the personnel department that | had at last gone and moved out of Miton Hall into a
Portakabin (hired by Sinclair on Sinclair's property), in front of the main entrance, where | could be
reached in case of emergency.

The start of the myth
The next is partly hearsay, | was out of the loop, but it seems to be confirmed by the rather guarded
reports | have seen by the journalists present.

When the first QLs were ready to be shipped, Sinclair Research organised a press demonstration. It is
not clear what the purpose of this demonstration was. It certainly made a very bad impression on the
press. That may or may not have been the intention of those who organised it.

The QLs on demonstration had a black dongle hanging out of the back, as did the first QLs shipped to
customers. These QLs were also equipped with pre-test OS and SuperBASIC, without all the work-
arounds for the known hardware faults, with their own known bugs, with only a subset of the Spectrum
procedures and with some procedures having different parameters from the final version.

Having a dongle hanging out and having pre-test software are strange features for machines intended
to impress journalists.

The dongle

Even if you find it difficult to believe that the JM version was available from well before the launch, the
dongle itself would have been strange. The reason most often quoted, that the firmware had turned out
larger than the planned 32 kbytes and so the PCBs had to be modified to take larger ROMs, was totally
untrue.

1. There never was a planned size for OS + SuperBASIC because this was never planned.
2. From the start, all PCBs had the wiring for up to 64 kbytes of ROM.
3. From January, all PCBs had two sockets specifically for 32+16 kbytes of ROM.

The QL PCBs were, however, designed to take ROMs with on-chip address decode. EPROMs cannot be
fitted directly into the QL PCB: a spider is required for the address decode. But if, for the sake of
argument, we take it that that shipping QLs with EPROMs rather than ROMs was a justified technical
solution, there is still no justification for the dongle. Why ship with three 16k byte EPROMSs rather than a
32k byte EPROM and a 16k byte EPROM? A 32k byte EPROM did not cost more than two 16k EPROMs
+ a PCB to plug into the ROM socket + case + the assembly costs. Even mounting three 16k EPROMs
internally (as in build D06 where three 16k EPROMS recycled from returns were used) would not be more
expensive than using a dongle on the outside.

When [found out about the dongle on the QLs that were being shipped to customers, | contacted
production and was lucky enough to get hold of a friend. Apparently, the dongle was the outward sign
that the QLs that were being shipped were "pre-production’ (ie. did not pass even basic tests): they
would all be recalled and replaced as soon as fully functional QLs were available. Being responsible for
quality, he thought it was stupid, but it was a decision from above. He was unaware that the FB version
being shipped was not the current, tested, released version of the firmware. He had been told that the
later versions had not been tested and might be less reliable than FB. There was, apparently, internal
disinformation as well.

The story about the dongles | heard from production seems to be confirmed by other sources. The
Sinclair service manual for QLs only covers builds with ROMs or "piggy-back” EPROMs (build DO6 on-
wards): dongled QLs were scrapped automatically as it was not considered possible to rework them.
Elsewhere, builds up to and including D05 (pre issue 5 PCB) are referred to as pre-production and there
are no ‘mandatory modifications” for these to bring them up to standard - they are just scrap. So the
dongle really was just an excuse for recaling non-working QLs to be scrapped - despite the well
publicised policy of "recalling for firmware upgrade’.

Pre-test software

Having established that production did not have the current version of the software, | did then manage to
get hold of a director who was apologetic but he explained that the press would accept software bugs
more readily than faulty hardware (it turns out he was right, the press swallowed the story hook, line and
sinker). This had nothing to do with whether there was a dongle hanging out of the back or not,
although the dongle certainly helped. Faulty software was being delivered deliberately as a smoke-
screen.

The demonstration

However, if you were organising a press demonstration and wanted to make a favourable impression,
would you provide machines with a dongle hanging out of the back? What sort of deranged person
would think that pre-test software would help dispel the conviction that the QL was "not fit for sale’™?

The report in the June issue of Practical Computing summarises the event well.

"The bad news is that QDOS and the bundled software's current implementation is what one of Sinclair's
engineers described as ‘flaky'. Even basic operations like retrieving specific bytes from Microdrives
brought the system down. Several of the bugs thrown up in the session seemed new to Sinclair, and
were noted with bemused interest” There are several things about this report.

1. The firmware was described as "flaky” by only "one of Sinclair's engineers’. The others did not.
Even the term flaky is revealing. It is not a description of software, it is the denigration of a person:
"an offensive term describing somebody regarded as eccentric or irrational” or "a procrastinator, a
careless or lazy person, dishonest and doesn't keep to their word".

2. 'Retrieving specific bytes from Microdrives brought the system down™ no such firmware bug has
ever been reported on any bug list that | have seen. There were, however, serious hardware

problems.

3. Only "QDOS and the bundled software” {the Psion suite) were mentioned as being bug-ridden.
Later reports only mentioned SuperBASIC as suffering from bugs.

4. "Several of the bugs thrown up in the session seemed new to Sinclair and were noted with
bemused interest’. For bugs in the Psion suite this would not be surprising, as | do not think
anyone at Sinclair had seen the Psion suite in action on a QL. As far as the firmware was
concerned, those who had taken part in the independent testing up to JM, would certainly have
been bemused at seeing bugs that had been fixed weeks before.

At this demonstration, did anyone from Sinclair actually say anything that was untrue? The firmware in
the QLs on demonstration was unreliable - it was the first test version — but did anyone from Sinclair say
that it was the current version or was this a reasonable, if incorrect, assumption by the press? Did
anyone from Sinclair say that the PCB could only take 32 k bytes of ROM, or was this assumed by the
press because there was 16 k bytes in a dongle hanging out of the back? It seems that it was not
necessary for anyone to lie about the state of the software development: the press was quite able to
make up its own stories.

This demonstration with dongles and pre-test software was, however, only the start of the disinformation
campaign. It was certainly not casual misinformation: over the next few months, the firmware versions
that had been produced at weekly intervals in February and March 1984, appeared in production QLs at
monthly intervals to give the false impression the software was being updated all through spring and
early summer of 1984. Who was updating the software? Sinclair had no-one working on QL software
until after the summer recruitment of new graduates.

This was clearly not enough mask the real problems. By mid summer, the first stable version JM was
being delivered, but the hardware was stil not fully functional and some journalists had noticed that
software updates "cannot make any difference to the hardware faulis’.

Was this smokescreen just the result of panic in a company that had fraudulently promised 28 days
delivery, had taken the money and, three months later, found itself still unable to build working machines
and desperately needed to cover up the truth, even if the cover-up destroyed the company? How many
people were involved in the decision to ship pre-test software in place of tested software? How many
even knew that there was fully tested software ready to ship? Was someone taking advantage of the
panic to try to turn the situation to their own advantage?

Reasons for the smokescreen and the nine month delay to issue 6
After | wrote the first draft of this {true) story, | managed to contact some of those on the periphery of
the project. This provoked some spontaneous comments of the nature "They can't do anything to stop
you now” (who are they and why would they want to stop me from doing what?) and ‘It's about time
someone said how you got shafted”. They also enabled me to fill in quite a lot of the pre-launch story
but they suffered from near total amnesia for the critical period of the six months after the launch. One
of the amnesiacs told me that he did not know what happened because, at the time, he decided that he
did not want to know what was happening.

What they agreed on was that the panic was total. Sinclair had angry customers, the Advertising
Standards Authority and the Office of Fair Trading all leaning on it. Admitting that the working hardware
could not be delivered three months after the launch would be equivalent to admitting that the hardware
was not working at the time of the launch and that Sinclair had taken money without being able to
deliver - and that would add criminal investigations into the pot (about two years later, Chris Skogland of
Medic was sentenced to 6 years prison for reckless trading™ being the director of a company that had
taken money for a QL accessory that was not ready to ship). Delivering QLs made it possible to justify
taking customers’ money, even if the QLs did not work.

Rt
] -
|

A convincing explanation for the nine months it took to ship fully working QLs also emerged. All the
modifications required to make the machine reasonably reliable were known by March, but, apparently,
there was a total refusal to "delay” production to fix the problems, so, for months, production of non
working, or barely working, machines staggered on in the hope that the customers would accept the QL
as it was. There were directors completely unable to accept that, with a £400 price tag, the QL had to
be, not just as reliable as, but significantly more reliable than the Spectrum.

31st of October and 1st of November
2009 - Luzern, Switzerland

When | first heard of the show in Lucerne (Luzern)
that Urs Konig was planning in Lucerne (Luzern) |
knew this was another good excuse for a short
tax-deductable 'holiday’. However there appeared
to be no-one coming from the usual flock of QL
traders. However Simon Goodwin fancied the
idea, and a group of the usual villains (Diwyn &
Ann, Jochen & Andrea and Marcel) joined in.

anKs 1or organising tis event:

aml

Urs onig

| offered Simon a lift to Luton airport on my motor-
cycle - one gets free parking in the short-term car
park! | was amazed he accepted as he burnt and
destroyed a shoe last time he rode pillion with me.
Simon though wanted to see lan Pizer in Geneva
as well - 200 miles or so from Lucerne. | worked
out the cost of hiring a car, and it proved cheaper,
allowing for a free stay at lan’s for both of us, than
us going separately by public transport. Having

avoided the Villa Marias in Czechoslovakia and
Germany, | managed to book, by email, rooms in
the excellent looking and cheap guest house "Villa
Maria” in Luzern. Despite her really awful English,
and seemingly stuck capslock key, it all looked
good. | also booked Easyjet and car hire very
simply. The car hire, at £30 a day was especially
good value.. Even better Dilwyn and Ann were on
the same Easyjet flight, so we negotiated a taxi
fare to Lucerne. Switzerland have a brilliant tourist
trap. Motorways require a cheap £20 annual
vignette. Tourists have to pay the same, but of
course only for the duration of their trip. ... or so
we thought (see later).

We arrived at Luton in good time, especially as
we bypassed the good 30 minute car queue into
the airport. We had hand baggage only. but my
case strapped on my top box along with me and
Simon must have been quite a sight. On arrival at
Zurich, | could go straight to the car hire while
Diwyn and Ann had to wait for their hold
baggage. All was fine until we tried to escape
from the airport. | had my motorcycle satnav on
the windscreen (using a suction pad). That was
great but airports do not have addresses so the
way out was a mite unclear We only had to
navigate out of car hire and out (using the free car
park ticket) twice! It was complicated by the
satnav taking a long time to find all those exciting
new sateliite fixes. She (the Garmin voice) seemed
overjoyed announcing that we were in
Switzerland. | resisted Simon's offer to find a
German voice! We did though set it to kilometres
which would help with speed limits (see later). |
must say | find 'exit in 300 metres’ an awful lot
more comprehensible than ‘exit in point four miles’.
Why on earth don't Garmin use yards like Tomlom!
It was very appropriate that the emergency pack
in the boot of the car was branded Konig.
Anyway the "taxi’ eventually set out with the
Welsh tourist fare to Lucerne. | had stored the
relevant routes in my Satnav and all was fine. | had
forgotted to buy a vignette, so avoided motor-
ways until Lucerne when we could ask at Dilwyn’'s
hotel. We arrived there in good time via the back
roads, and proceeded to help ourselves to coffee

and biscuits in the unattended reception. | also
reset the home page on their free internel
computer in the lobby to the QL-Mac show. I also
made a copy of a Luzern map on their
scanner/printer. The receptionist arrived just as |
was doing this, and | thought her odd look was
because | was using her printer No such thing -
she thought | was the engineer she had called to
repair it!

Off then for Geneva driving at first in the wrong
direction. Satnavs, or at least mine, has no idea of
direction unti one moves. Why dont they all
incorporate compasses? We had our first tourist
view of the lake and Luzern - a really magnificent
sight even (or maybe especially) through the mist.
"Look there is the transport museum” said Simon,
so we knew where the show was. They had
steam frains and the lke in full view behind full
height glass windows. Why oh why do none of
the London museums (especially the science
museum) have such a display. You really don't
need to say what it is, and it sells itself perfectly.
A few seconds later, Simon said "There is Villa
Maria”. As advised by Dilwyn's hotel, we stopped
at a garage to buy a motorway vignette. As | was
sticking it to the windscreen, both of us noticed
there was one there already! | expect the first
tourist hirer in January buys one and they leave it
there for the rest of the year thus defeating the
cunning government tourist trap. Amazingly the
garage refunded me, so our budget (sorry about
the car hire pun, and ours was Budget) was £20
better off.

Onward to Geneva and a double flash at 110kph in
100kph roadworks - my fingers are still crossed!
The Satnav took us unerringly straight to lan's
door "..on the left’. No matter it was on the right! |
think the software assumed we were still in the
UK as it did the same thing at Dilwyn's hotel. We
should have chosen a German voice and
changed it to French in Geneva - maybe they
would have got it right. It was good to see lan
Pizer and his wife Eveline. | think the last time was
at QL2000 in Portsmouth. He is quite frail now, but
still pretty well, despite a balance problem.. | hope
when | get to his age | will be anything lke as
healthy in mind and body. | then realised we had
not brought any contribution for the stay. | needed
to get petrol anyway, and managed to stop Eveline
coming with me, although she then realised
exactly what | was planning. They said it was
impossible to find, and Eveline would look the
other way. However my GPS had the petrol station
in its database. The return was the really hard bit,
but again no problem. On reversing into his drive |
couldn't see a very low wall. | thought | was close
to the wheelie bins so drove very slowly, and

touched the wall. It is amazing how invisible the
white marks were when | painted them with a
black marker pen! Why dont all cars have
bumpers like my Volvo - so solid they once wrote
off a snazzy BMW that drove into the back of i,
and there was no mark of any sort on my car!

lan had a new Iphone but could not get an internet
connection using his wifi. | got a connection to the
wifi router from my Macbook and an IP address,
but no DNS. | correctly guessed the router IP
address and the login - yes ‘admin’ and no
password. DHCP was set OK, as the assignment
of IP address suggested. It was set to the latest
protocol - WEP! There was nothing else on offer,
so it looked like the router was simply too old.
However | found another very buried section,
where it offered Set up wireless. This | followed
and all the protocols were there, including the
WPA2 | wanted. "What password do you want,
lan?". | will not expurgate the rest as it will spoll a
later joke, but | doubt if anyone will want to drive
to outside lan's to use his wifil "Chinese” he said.
"No that is too simple - we need another word” so
he chose fondue. Perfect we thought, there
cannot be any such dish (see later). .. and of
course the wifi then operated perfectly. It is quite
odd that modern systems cannot now cope with
WEP [Jochen cannot withstand to add two
comments: first, all of the devices | know still
understand WEP ... the Iphone is the only one |
know which cannot handle it (another item on the
list of things it can't do, which you take for
granted) ... but maybe Apple adds it later, sells it
as a great feature - who knows, as they keep
doing this with other “features” which are
standard on other phones for years. As for the
WPA2 password - here I'm puzzled as |
remember that my routers forced me to use at
least 8 characters, and “fondue” is definitely
shorterl.

The drive back to Villa Maria was totally unevent-
ful and we took the last parking place. As we sus-
pected from their website, it was quite OK, had
free wifi (which worked) and a good view of the
lake.

.. and so to the show. | expect others will properly
describe it so | will say little. We missed Urs' hour
introduction, so he gave a quick 5 minute sum-
mary just for us. There was a very snazzy over-
head computer screen projector, and Marcel even
networked a machine to show demos in a
Window (How did you do that Marcel? - | meant to
ask). There were very interesting history lessons
on Apple and DOS/Windows and a preview of
Windows 7.1 am not sure how that crept in but it
was interesting. Its new search is a pretty straight
copy of the Apple Spotlight, including the icon!

Verkehrshaus Luzern from outside

View at the exhibition ftrains to the left, traffic signs right)

Dilwyn described his Launchpad, and | think we
were all impressed that his very good icon-rich
windows were all coded by him. The view of the
lake and Lucerne was magnificent, but Urs often
had to operate the motorised shutters to allow the
screen to be seen. Adjusting the room lights
though was a mighty hard job. Marcel closed the
show with a talkk on his life with QPC. [didn't
realise he wrote the first version when he was 14.
It was only a partly working beta, but people
demanded to buy it. He didn't have a good clas-

Dilwyn demonstrates aunchpad

nfo Preinsack from Vienna explaining fhé AMIGA histor
He seems to be infected by the "QL virus™ now..

sical education, and called the next version "alpha’.
This first encounter with the buying public forced
him to bring it into production. It shows the power
of the user Without that encouragement, maybe
we would never have seen it brought to life.
Marcel's attitude toward the project is perfectly
demonstrated by his introduction of TCP/IP - "just
for fun’. it was pleasing to see a thread in gl-users
mailing list where someone had missed his earlier
email and wanted to try it. A few simple lines of
basic downloads a web page. Now who is going
to write the QL browser? (8-)#

Simon and | escaped on Saturday to play in the
transport museum - thanks Urs for the half price
tickets. It was interesting to see the technology
from a Swiss viewpoint. Anyone would have ima-
gined from the early flight exhibit that the Piccard
brothers were the leading lights. There was less
mention of the Wright brothers! There were plenty
of Swiss planes and space modules, but no sight
of the Swiss navy. We unfortunately decided to
leave the trains for Sunday, but didn't manage to
see them. Simon and | managed to crash a lie-
upon early plane mock-up (Wright brothers), but |

Many original Sinclair items on display, here QL stuff..

Of course, there were Macs, other Sinclair products (like
the ZX 81 and ZX Spectrum in working condition, but also
computers like the Thor)

think we were expected to, and it was only a
computer demonstration, although pretty realistic.
Qutside there was a briliant giant mosaic of old
motorway signs. ... S0 Zug is near Lucerne. Hea-
ther, an alto in my church choir had moved there a
few years ago, but | didn't know her address.

On Saturday evening we all met in a restaurant for
a meal. This was our first wallet-opening view of
the real Swiss world, and | was struggling to find
anything remotely affordable. Up to then we had
not had to spend any real money. The only thing
cheaper in Switzerland was petrol. There was
only one chicken dish - wings in a red sweet and
sour sauce. | hate sweet and sour sauce. | couldn't
afford a steak at about £35. | settled for what was
clearly a tourist pauper's menu (as did everyone
around me). | had two tiny meat burgers tasting
only of Maggi sauce, some boiled rice, and, yes, a
sweet red sauce. That cost about £12.50. Dilwyn
told us about the hot water they gave him and
Ann with some uncooked meat and vegetables in
a hilltop restaurant. It cost over £60. They called i,
wait for it, a Chinese Fondue (see earlier). Blow.
Simon and | walked back to Villa Maria leaving
Marcel f{our thid man in the room) at the
restaurant. | said | would text where | had put the
outside door key {'Under rh shrub pot” - referring
to my phone’s sent folder), We though completely

missed Villa Maria first time round. "Seems a long
way’. Isn't that the transport museum?”

The show finished at 5:30 and Simon and | set off
for Zurich with our briliant souvenir rucksacks,
with a show emblem made and sewn on by Urs -
thank you Urs. First thing though was to get a
good car wash. The car hire had already said they
could not sign off a dirty car and | had the
scrapes. On the way we went over Zug (Hallo
young Heather wherever you are - but that is
King and | not Sound of Music - apologies to
Oscar Hammersteinj.and arrived in Zurich. ‘Lets
not go straight to the airport but look for a nice
local restaurant”. We first filled with petrol, and then
found ourselves right in the middle of a commer-
cial area. Not a sign of food. After maybe 30 minu-
tes we found a street absolutely stuffed full of
restaurants including a VEGETARIAN one espe-
cially for Simon. Yippee. | parked but then realised
we were too tight for time, so off to the airport.
Budget signed off our sparkling waxed clean car
and we had a pretty good and not too expensive
pizza each, We then had what seemed plenty of
time to go through security. No such luck, as it
was a 20 minute journey including a train. | also
had too complicated a bag for them and they had
to separate everything and | was taken away 1o a
dark room to be frisked. | thought maybe they
were going to strip search me! | arrived at the
Easyjet gate a good 10 minutes after it closed, but
there was a long queue. Phew.

We made it back on time, it was dry, and the
motorcycle was there and happy. Simon though
had mislaid his wallet, and needed petrol. He had
only cash, but maybe the Aylesbury stations were
automatic only at 22:30 on a Sunday. | filled up his
car from my spare petrol can, and he seems to
have made it home.

Well done to Urs for organising an excellent show
in an excellent venue, and he and the local user
group paid the bills for the venue.

We may all be meeting again next summer in Vienna.

One of the most useful entries to the QDOS or
SMSQ/E operating system for an assembler pro-
grammer is IO_EDLIN. This is a Trap #3 call with
DO = 4 which allows a line of characters to be
edited. However, Andrew Pennel, in his guide to
the QL operating system, The Sinclair QDOS
Companion, says:

"This is potentially a very useful trap, but is
tricky to use.’

I have used this trap in several programs but | had
a hard time getting it to work so | agree with Pen-
nel. While adding items to Norman Dunbar's useful
QDOSMSQ Wiki, described in QL Today Vol 13
Issue 4, | looked more carefully at IO_EDLIN so
that | could describe it properly, and realised that
although my programs which used it worked, it
was more by good luck than good management. It
was clear that | had not fully understand the trap's
working.

Since others may also find the trap tricky | thought
it might be useful to set out what | have found.

The definition of any piece of code in an operating
system serves two purposes. First it shows the
system programmer what must be coded. Second
it shows an application programmer how to use it.
These are two different purposes and in the
particular case of IO_EDLIN | think the definition as
it appears in all the places | have looked in has
suffered as a result.

System Programmer’s View

What JO_EDLIN must do is to arrange for a string
of characters to be edited by a user pressing
keys. The editing must allow the addition and
deletion of characters, the positioning of a pointer
to any character in the line and, finally, to the ac-
ceptance of the string. How should this be done?
The string must exist somewhere. Hence the need
for a buffer in RAM. Also the changes to the
string must be mirrored on the screen. Thus we
need a CON channel to be opened and we need
a pointer to the buffer.

We can now see more clearly what the system
programmer must do. He must read in one charac-
ter at a time from the CON channel and act accor-
dingly. A left or right arrow key must move a poin-
ter to the current character in the string to the left
or to the right with the proviso that the pointer
must have a value between 0 and n, where n is

the current length of the string. The value 0 wil
mean that the pointer is on the first character and
the value n will mean that the pointer is one
position to the right of the end of the siring.

When a character is erased, all the characters to
its right must be moved one position to the left.
When a character is added the all the characters
from that position to the end of the string have to
be moved one character to the right. All this must
be mirrored on the screen. One implication of all
this is that the position of the cursor on the
screen must be at the same character as the
pointer in the buffer Thus when a set of charac-
ters is moved in the buffer those characters must
be printed to the screen at the current cursor po-
sition. When that has been done the cursor must
be returned to that position.

There is one other value that the system pro-
grammer needs. That is the size of the buffer,
otherwise it would be possible to input an un-
limited number of characters with potentially disas-
trous results. When one of the characters, ENTER,
LEFT or RIGHT is typed, the end of the string is
signalled. For SMSQ/E the character ESC is al-
lowed too as a terminator. The terminating charac-
ter will form part of the string. This means that the
length of the string itself must not exceed the
length of the buffer less one. Attempts to make
the string longer must cause the routine to exit
with a buffer overflow error.

Having seen what the system programmer has to
do, we can see what he must demand as initial
parameters. These are:

The position of the buffer ALL points to the
END of the string.

The length of the buffer D2W is the buffer's
size (in bytes).

The current length of the string DIW is the
string length (n)

The current pointer in the string DITOP (a
value from O to n)

The ID of the CON channel AOL is the ID
D1TOP is the high word of D1

From this the system programmer can see that
start of the buffer is at address AlL - DIW The
end of the buffer is ALL - DIW + D2W.

The pointer to the character in the buffer is given
in DITOP

The system programmer will assume that the cur-
sor on the screen is positioned on the same cha-
racter as in the buffer It is up to the application
programmer to see that this is so. Help to the
application programmer is provided here because
when it starts IO_EDLIN prints the end part of the
line from the position given in DITOP IO_EDLIN
then resets the cursor to its original position. You
will recall that that operation is one that is needed
inside the trap.

Application Programmer’s View

Let us suppose that we want the string
‘raml_prog’ to be edited by:

Please edit: raml prog

First the characters "raml_prog™ must be put in a
buffer of length 40 bytes say.

Second the characters "Please edit: * are printed
to a CON channel whose ID will be put in AO. At
this stage the cursor position in the CON channel
will have x-position 13. However, it is now at the
place where the string rami_prog” will be printed.
The position to be set in DITOP would be O to
signal the start of the string, not 13. If IO_EDLIN is
activated with this information, “rami_prog” will be
printed to the screen and the cursor will be at the
start of that string. By moving the arrow keys the
cursor on the screen is now movable from the
beginning to just after the end of the string.

It is also possible for the application programmer
to arrange to print out the whole of the string
himself instead of allowing IO_EDLIN to do it in
which case DITOP must be set to 9 {the length of
the string). When I0_EDLIN is activated now, it will
print no characters and the cursor will remain at
the end of the string.

If the application programmer wants the position
of the cursor on the screen to be on the p’ of
‘prog” he will have to print 'rami_" on the CON
channel and set DITOP to 5. This wil cause
I[O_EDLIN to print the remaining characters and
set the cursor on the screen to the character 'p’.

Trapping Overflow

Buffer overflow can only occur when the current
length of the siring is equal to one less than the
buffer length. In that case overflow will actually
occur if a character other than a terminator is
typed.

If the application programmer does not arrange to

trap buffer overflow then the results can be un-
predictable. | would suggest that the simplest

thing to do when buffer overflow is detected is 1o
reset the string to just before the extra character
was typed and re-enter IO_EDLIN. This can be
done by printing the whole of the string (of length
D2W - 1) to the screen and by setting DITOP and
DIW to D2W - 1. In this way IO_EDLIN carries on
with the cursor being just after the end of the
string. It would be useful too to emit a sound to
indicate to the operator that something was
wrongly typed but that is up to the programmer
At any rate the editing can now continue.

Final Comments

Pennel states that "on return there is no way of
finding out where the cursor was when the edit
terminated’. On the other hand Opie, in QL
ASSEMBLY LANGUAGE PROGRAMMING, says
that D1 will have been updated. That is certainly
true with SMSQ/E.

In fact, during the operation of IO_EDLIN, after
each keypress the contents of both D1 and Al are
updated. For a left or right arrow key the value of
DITOP is decreased or increased by one. For a
deletion left, DITOP DIW and Al are all reduced
by one. For a deletion of the character under the
cursor, DITOP is unaltered. If a character is added,
all three of DITOPDIW and Al are increased by
one.

If a terminating character is pressed, it is added to
the end of the string, not to the place where
DITOP currently points. The value of DITOP re-
mains unaltered, but the values of DIW and Al are
both increased by one.

Thus the final position of the pointer to the
character in the string can indeed be found from
the returned parameters. It is in DITOP The posi-
tion of the cursor on the screen is DITOP charac-
ters from the screen cursor position of the start of
the string. This position in the window could be
found anyway by using the trap SD_CHENQ.

| think the main reason for the trap’s apparent
trickiness is the confusion arising from the defini-
tion of the parameter in DITOP Although "cursor
position” may be clear enough to the system pro-
grammer coding the trap, it can be very confusing
to the application programmer. The true x-value of
the screen cursor position is only the same as the
value in DLTOP if the string is printed at the start
of a line rather than somewhere in the middle of
the line. It might have been better to define the
parameter in DITOP as the "character pointer” and
to add a note saying that the cursor on the
screen should be set to be on the character to
which the "character pointer” points.

25 years have gone by since the launch of the QL.

More than one person has suggested that | should write a little something to celebrate the occasion.
This seems to me a bit strange. | am well aware that the launch of the QL was not as disastrous as the
sinking of the Titanic or the 2004 Indian Ocean Tsunami. But celebrate it? Strange!

So rather than describing the development of Domesdos (the earlier name for QDOS), | thought | would
look back at all the progress that has been made in system software, and, in particular personal compu-
ter systems over the past 25 years.

To appreciate the progress made, it is necessary to wind back the clock to 1983, the year that the
ZX83 was not launched. Much has already been written about this rudderless project that started out as
a development of a portable version of the Spectrum (ZX82) and ended up as a quantum leap into the
void, so | will not repeat, confirm or deny it here. | will just try to give the background.

Then | shall describe where Domesdos went after the ill timed launch of the QL which was just a black
shadow of the planned ZX83.

Finally, | shall give my own view of the progress made in workstation operating systems since 1984.

In the beginning

The QL started as the ZX83, a development of the ZX82, The impetus to create a new operating sys-
tem for it came from the decision 1o replace the trusty Z80A microprocessor by a cut down MC68000.
This "sexy” 32 bit microprocessor obviously needed something more impressive than the old spectrum
software and Sir Clive decreed that it should have a "version of Unix that works’. Later on, other require-
ments were added.

Depending on your point of view, the resulting system was a major breakthrough and outstanding suc-
cess or it was a totally disastrous deviant.

For those who were not around at the time the idea of a "version of Unix that works™ must seem bizarre.
Surely, all versions of Unix worked, didn't they?

Unix in 1983

Well not quite, Unix "sort-of” worked provided you did not try to use it. At the time, UNICS (and later Unix)
had been around for about 13 years, during which it had become legendary for its exceptional slowness
and quirkiness. Unix had three great attractions for academics - it was free and so did not require a bud-
get - it was portable and so could be implemented on new platforms in not much more time than it
would take to re-write it from scratch, keeping thousands of students off the streets — it was quirky and
so using it was a real challenge. The slowness was not an attraction, but neither was it a serious pro-
blem in the academic world.

Unix however had offered a glimpse of a different idea of an operating system. It was not so much what
it did, but what it might have been able to do in a world with unlimited computing power, and if it had not
been Unix. The problems were that computing power was not, is not and is not likely to become unlimi-
ted, and Unix was Unix.

The il-fated XENIX system should give an idea of the slowness of Unix. When this was launched {just
after the QL) on an IBM PC XT platform {about 4 times faster than a QL with 10 times as much working
memory) one journalist coined the phase "a brain dead version of Unix" — an epithet that stuck. But it
was not "a brain dead version of Unix’, it was a real Unix running on a desktop computer which lacked
the power of a $100,000 VAX (the favourite Unix platform of the period). A 2009 personal computer is
several thousand times faster, with several hundred times more memory, than a early 1980s VAX, so,
although Unix is still chronically slow, this is not now as obvious.

The slowness of Unix was, however, not the only problem: it also suffered from an operating system
interface that was, as the French would put it, bordélique and it had a well deserved reputation for
chronic instability.

P,
SRR e
G et SRR B s

X
[4 SRR
» e w{,&‘imi,wwwm

A Unixly chaotic operating system interface

The chaotic operating system interface was a direct result of a design choice made by the developers -
minimisation of the number of operating system functions.

This minimisation of the number of operating system functions had three effects.

The initial effect was that the real world had to be twisted to fit into the Unix minimalist world. For exam-
ple, the 1/0 system was based on the paper tape reader / punch model: when console 1/0 and a data
storage system were added, these had to be twisted to fit the paper tape model. While this had the
advantage of facilitating the implementation of scripts (which are still fundamental to the operation of a
Unix system), it had very serious consequences both for the primary use of the filing system (data sto-
rage and retrieval) and the interactive use of the console. So the whole I/O system was all turned onto
its head and everything was treated as a file, even if it was an interactive device. This made it even
more irrational.

The second effect was that anything other than the most basic functions had to be added on. This was
great, everyone could have their own flavour of extended Unix — hundreds of different, incompatible
commercial and university versions and thousands of private versions. Is this really a good idea? The
developers and the academic establishment thought so — natural selection of the best version was
obviously better that allowing a development group to impose an arbitrary choice. | did not find this such
an obviously good idea.

The third effect was that functions that could be implemented simply and efficiently by a single opera-
ting system call were pushed out into C libraries where complex and inefficient routines had to make
large numbers of "primitive” OS calls for each higher level function. Later this complex and inefficient
approach was elevated to a virtue. Minimalist operating systems interfaces became "a good thing’.

A Unixly unstable operating system

The instability of Unix was another concern. Just before the QL came into the world, Sun Microsystems
was set up to exploit the nascent interest in Unix by making workstations using the most powerful
microprocessors then available (3M machines: 1 MIP1 Megabyte, 1 Megapixel). These were sufficiently
powerful for their SunOS version of Unix to seem comatose rather than brain dead. A great innovation in
SunOS was the fast boot process to recover from system crashes quickly. Paradoxically, as one
reviewer pointed out at the time, this made SunOS seem even less reliable than standard Unix: an
ordinary version of Unix taking five minutes to boot could only crash 12 times an hour, whereas SunOS
booting in less than a minute could crash 60 times an hour Even when Unix was not crashing, the
reliability, in terms having a system that did what you wanted to do rather than what it wanted to do, was
not particularly good - to quote Dave Mankins' who slightly misquoted Johnson: 'making Unix run
securely means forcing it to do unnatural acts. It's like the dancing dog at a circus, but not as funny -
especially when it is your files that are being eaten by the dog’, evoking the propensity of Unix for
destroying your data even in the absence of deliberate attacks.

Sir Clive’s "Unix that works”

Sir Clive's idea of a "version of Unix that works™ was, therefore, really rather revolutionary.

| interpreted "that works™ as meaning that it should be efficient, reliable and with a rational operating
system interface to remove the three main Unix problems. Some people have always objected that a
"version of Unix that works” should have been efficient, reliable and with a standard Unix operating
system interface. However, | took the view that the standard Unix operating system interface was not
only a serious problem in itself, but also a barrier to making the system efficient and reliable.

There never was even an outline specification for the new operating system for the ZX83, Sir Clive did
not work that way - he had an amazing capacity for delegation, for letting his "chosen’ to get on with
the job and for accepting the conseqguences himself if it all went wrong. So what were to be the salient
points of a new operating system for the ZX83?

1 Unix Hater's Handbook http:/www.simson.net/ref/ughpdf

Single user with pre-emptive time-sharing between tasks.

Unix was (and still is) a multi-user system. Although it was possible for a single user to pretend that he
was several users, this provided only limited multitasking with negligible interaction between tasks:
"native” pre-emptive multitasking allowing operations on shared data structures was not to become
available for many years.

At a distance, it is difficult to imagine why pre-emptive time-sharing between tasks was thought to be a
good idea, but there was a group at Sinclair that was working on parallel systems, and they thought it
would be useful to be able to have a hundred programs running simultaneously, sharing memory, for
simulating a massively parallel processing system. So one hundred application programs running
simultaneously became the target.

Maybe it was not such a bad idea. After al, this was something that you could not do using a $10,000
Apple Lisa, a $20,000 Sun workstation or a $100,000 VAX? and the typical Sinclair customer was an
enthusiast.

From a more mundane point of view, this did allow little features such as clocks to be implemented
without requiring the "main application” to continuously call a function to pass control to another task. It
did allow background communications tasks to receive and transmit data without the "main application’
being affected. But, in itself, it could not directly handle "switching™ between applications. Why not?
Because, if you had two or more applications running simultaneously they could both be writing to the
display at the same time: which would you see? If a user typed something, which application would get
the keystrokes? There were two reasonable solutions to this problem: having only one application
"active” at a time (single task switching) or windowing - it being much easier to do both as in the early
Apple Mac.

Monospaced text 1/0 on bit mapped display.

This was to become, possibly, the most disappointing feature of the QL software. There were reasons

for this being the obvious choice.

1. The display handing was all carried out by a device driver that could be {and was, many times)
replaced, even while the machine was running. A graphical user interface (GUI), was, therefore, not
a baseline requirement.

2. The conventional schemas for implementing these GUIs all placed a very heavy interface burden
on applications, making it very difficult to write software for the machine. Moreover, Sinclair had
contracted Psion to port an office suite designed for the monospaced text PCDOS environment.

3. Existing systems with GUIs were, to say the least, extremely limited and slow even with hardware
much more powerful than the QL.

4. The Sinclair computer range had, from the start been a ‘instant programming machine’. This is
totally anti-GUI.

5 Time

Device independent filing system.

Not the Unix "everything is a file” syndrome, but allowing, for example, data to be read from a storage
device as if it were coming from a console (a line at a time) and files to be read or written (handling file
length, properties and end of file) over a communications port as if you were accessing a storage
device, while providing a clear separation of distinct input and output functions.

Real-time hardware management.

The QL hardware was designed using well established Sinclair principles: do not do it in hardware if you
can do it in software. There was no question of trading off cost against performance. The software had
to respond to a general interrupt, identify the interrupt source and transfer information to or from a
device driver or application in a handful of instructions - unlike any other PC or workstation, there was
no hardware buffering, FIFO or DMA.

2 Five years later, contemporary reports on the spread of the Morris Worm estimated that 1988 VAXs running BSD Unix
were unable to handle more than 20 active processes.

Like most computer users and software developers at the time | had suffered from conventional opera-
ting systems | could understand the potential of Unix but | did not understand why it was so
exceptionally bad. It was supposed to be simple, which should make it efficient, but its slowness was
already legendary. It was supposed to be simple, which should have made it reliable, but it wasn't.

So, there | was, | had a few months to turn Unix into a working system - a task that had defeated thou-
sands of developers who had been working on it for years - or had it?

The answer did not come in a flash, but when [finally got there, the answer was simple. The Unix that
we knew had not been designed to work and the developers had not been trying to make it work. This
Unix was the result of the application of academic theories of no relevance to the real world.

The Why is easier to explain than the How.

Why was Unix so bad?

That is very simple. Unix came from the academic world. Nobody's job was on the line. Whether it
worked or not ceased to be an issue after the first version printed "Hello world”. What was important
was the application of ‘'modern operating systems’ theories. At the time, the operating systems provided
by the major computer manufacturers had no theoretical basis - they were just cobbled together to
meet ad hoc requirements. On the other hand, the developers of these systems did not have cosy jobs
for life in research, so that if these systems did not work, their developers would soon be looking for
new jobs. This was a fairly powerful incentive in the days before employment protection.

As a scientist, (I have a certificate to say that | have a degree in physics, for what it's worth) a sound
theoretical basis is something that | wholeheartedly welcome, but, being a pragmatist, | feel that having a
working system is far more important.

How did Unix get to be so bad?

What intrigued me in 1983, while the Unix story was still unfolding, was that the main platform for Unix
was the VAX series of computers. It was all too obvious that the operating system running on these
VAXes just could not be the same as the UNICS that printed out "Hello world™ from a PDP7 in 1970 - The
PDP7 was about as powerful as a ZX80. There was clearly something louche in this story that no-one
was owning up to The Unix we knew could never have even given an indication of working on a PDP7. |
managed to get hold of some documents about the development of Unix, written by Dennis Richie,
amongst others, which shed some light on this anomaly. Although this is not the way it was put in those
documents, it seems that Unix had been the victim of the upsurge in computer science that occurred
over a very short period from 1962 to 1965. At that time, the leading lights in computer science were
unanimous in their view of the future of computing: the near future {the 1970s) of computing was enor-
mous time-sharing systems serving thousands of users. There was no possibility of buiding a single
computer powerful enough to serve thousands of users - the natural consequence was that the future
was in “symmetric multiprocessing” with massive arrays or networks of thousands of processors work-
ing in parallel.

The two problems to be addressed in this symmetric multiprocessing future were managing the con-
flicts between different processors for shared resources and distributing the users” workloads between
the processors. The solutions to both problems had to be transparent and equitable {for more details,
see "Modern Operating Systems”, 1990 by Prof A. Tanenbaum, who still believed in these theories 25
years later).

The multiprocessing model

There was a unified model of software execution (the ‘multiprocessing” model) underlying the theories
that were developed to meet this challenge. | am not sure that this was ever explicitly defined, 1 think it
was just a private consensus. This model treated all hardware configurations, single processor
computers, multiple processor machines with shared memory, loosely coupled networks of computer
and any other imaginable configuration as being equivalent, presenting the same problems and
accepting the same solutions. Above al, it elevated "symmetry” to the status of an inviolable law.

This was an approach that is very attractive: it provided solutions that were generalised and it promised
a sound, universally applicable theoretical basis for operating system development.

Unfortunately, the real world was and is rather different. Problems of sharing memory that can occur on
tightly coupled processor systems cannot occur on a distributed system with independent memory for
each processor. Likewise, solutions that make use of shared memory cannot be used if the processors
do not share memory.

| will not bore you with the almost endless list of real differences between different real hardware confi-
gurations that mean that, even where common problems can be identified, common solutions will be at
best suboptimal and frequently totally unworkable on real systems. As a result, single processor
multitasking systems were considered to be just a poor emulation of multiprocessor systems and so
were required to emulate all the problems of these multiprocessor systems, even though these
problems were not intrinsic to single processor systems.

The scenario was surreal. It was as if an eminent group of transport engineers had set out the design
rules for future transport. This would mean that cars, lorries and trains could not have wheels, because
they are useless on water. Ships could not have underwater propellers because roads are solid. Aircraft
would have to fly at ground level, because a ship or train taking off could be quite dangerous. The
generalised solution is, of course a hovercraft - a surface (land or sea) following airborne craft. In future,
all transport would by by hovercraft. This metaphor is not an exaggeration, quite the opposite. A
hovercraft at least has some useful applications, but | could not see any evidence that this mass of
1960s computer science theories could ever be applicable to any real system.

The surreal bit was not the theories themselves, but that, instead of being laughed into obiivion, they
were actually taken seriously and were still being taught as inviolable gospel truth to computer science
students. (25 years later this is still happening!)

Symmetrical multiprocessing

The unshakeable, immutable, unconditional, belief in symmetry had three main sources.

The first was a naive idea of fairness that arose from the only form of computing envisaged: multi user
time sharing systems. Symmetry should provide total fairness, but in practice it does not. Even the aim is
not very sensible: surely it is better that all tasks are completed quickly if unfairly rather than slowly and
equitably.

The second was a naive idea of simplicity. It was felt that it was simpler to have all processors being
equal, and, therefore, all programmed the same way. It is difficult to imagine that anyone could be so
naive as to believe that it would be simpler to have many processors each deciding which tasks were
to be executed and fighting over resources rather than having a dedicated controller. But they did.

The third was a simplistic idea of reliability. The model was that of an ant colony. Individual ants can be
killed but the colony carries on regardless. The big fallacy is thinking that the loss of a processor does
not matter — it does: the data being processed is lost and if it is your bank account that is lost, you
would think it mattered. The controller in a asymmetrical system is usually presented as a weak point. It
is not. A controller failure will not lose data and it can provide recovery from individual processor failure
with a simplicity and reliability that would be unimaginable in a symmetric system.

MULTICS and UNICS

The first major attempt to put these symmetric multiprocessing theories into action was in the develop-
ment of the multi-user MULTICS operating system. The story of the MULTICS development project and
the subsequent attempt by two of the MULTICS development team to salvage their amour propre by
developing their own system, UNICS, on the side, is now the stuff of legends. A thoroughly revised
anodyne history of the creation of Unix can be found in Wikipedia while another view can be found in
"Multicians strike back™,

But the story | found in the "original sources’ was rather different. Quite a lot of passages in these
original sources were clearly untrue. There was a categorical statement that "fork™ was the only

3 http:/wwwmulticians.org/myths html

MULTICS feature incorporated in UNICS. MULTICS was designed as a set of concentric shells round a
kernel, UNICS was designed as a shell round a kernel {notice the similarity). MULTICS used a virtual
machine execution model and, as "fork™ works by replicating a virtual machine, UNICS also used a virtual
machine model (coincidence? | do not think so) and so on. MULTICS had an execution model based on
processes, UNICS had one process and later versions multiple processes (spot the difference).

| do not think that Richie et al were trying to mislead us, the striking similarities were probably more a
result of UNICS being designed using the same dogmas as MULTICS, by people who had worked on
MULTICS.

Despite this there were many differences (UNICS had, for example, separate "process space’ and “files’
unlike the MULTICS combined process and file space), but, in their various descriptions, the authors poin-
ted out only one deliberate divergence from MULTICS: they abandoned the symmetric multiprocessing
of MULTICS with its associated problems of "competition for resources” and the 1960s theories for
dealing with these problems (including the synchronisation / mutual exclusion horrors). | could find no
suggestion anywhere in the documents that mutual exclusion was omitted because the theories were
fundamentally flawed: the authors apparently regretted leaving it out - they did so only to simplify the
system so that it could be made to work.

| repeat "simplify the system so that it could be made to work’. That was the key, UNICS was designed
to work, it was not designed on the basis of academic theories.

Furthermore, when UNICS was extended to handle more than one process at a time, mutual exclusion
was not re-introduced into the kernel. The authors noted that UNICS worked despite the omission of
mutual exclusion, but they do not appear to have considered the possibility that UNICS worked
because of the omission of mutual exclusion.

UNICS and Unix

Over the next few years UNICS became Unix and as it was ported to more and more powerful
computers, developers started to put back into Unix those things that had been left out of UNICS - no
wonder that it hardly worked any more.

By 1983, Unix had appeared on a small number of "executive workstations™ (or rather executive toys)
such as the Three Rivers Perq and the Sun, although, at that time, "the industry” treated Unix as a joke.
Most computer manufacturers thought that their customers would prefer to have their payroll output
reliably and correctly every Friday rather than sit typing commands such as grep "\« [tT]he\> end" all
day. Or as | heard it 'How can you tfrust an operating system whose commands sound like body
functions” (ps, sh. fc, grep, awk). The main usage of computers at the time was carrying out the same
operations every day, week, month or year reliably and predictably - in other words, boringly. Unix, on
the other hand, could do almost anything - and to make it even less boring, it did do almost anything,
regardless of what you might want to do.

The starting point for Domesdos

Basic design criteria and philosophy
There were 5 basic design criteria for Domesdos

Compactness
Unlike most executive toy and personal computer operating systems, the self contained operating
system for the QL had to be resident in a target 16k ROM.

Efficiency
It might seem obvious, but as the raw power of the QL was less than that of the first 1981 IBM PC, the
operating system needed to be efficient.

Reliability

This might seem rather odd for a company like Sinclair which did not have an outstanding reputation for
the reliability of its products, but there were two reasons for this, although both would disappear before
the first machine was delivered. The first was that the operating system was to be delivered in ROM and
it was not easily upgradeable. The second was that the machine was targeted at a more "professional’
market than earlier machines because Sir Clive did not want to be in the games market - he wanted to
be taken seriously.

Predictability

The dominant form of "serious” on-line computing was connection to a multi-user timesharing mainframe.
This form of office working had created a new stress syndrome. A major contributing factor was the
annoyance or frustration caused by highly unpredictable response which varied from sub-second to
tens of seconds. The predictability of the response to user actions had become major requirement.

Accessibility

The general philosophy of a multi-user system (and this includes Unix} is of a restricting system whose
primary aim is to restrict users access to prevent them taking control of the whole system. Domesdos,
however, was to be an enabling system to maximise the accessibility of the system and hardware
functions for both specialists and hobbyists.

Things to avoid in Domesdos

A good starting point seemed to be defining THINGS TO AVOID (the capitals are for fans of Terry
Pratchett's Discworld - to be spoken with a hollow, death-lke voice). These things to avoid were those
academically popular ideas that seemed to lead straight towards complexity. poor or unpredictable
performance, fragility or any combination of these.

1. Wilfulignorance

C programming language

Object oriented programming
Virtual memory / virtual machines
User based security
Synchronisation

Minimalisation

N W

These THINGS TO AVOID are described in more detail in Box 1 and the means used to avoid them in
Box 2. | did not realise at the time that these things to avoid would become the objects of worship by a
narcissistic idolatry cult popularly known as the "Computer Scientists”. | suppose that | should now call
them the "Seven Cardinal Sins of System Design”.

Good intentions . . .

The grand plans for a super operating system were derailed by a whole series of compromises required
to fit Domesdos into the world of the QL hardware, to support the Psion office suite written for a CGA
display on an MS DOS based IBM PC and to accommodate rapidly evolving in specifications and target
markets.

Box 1 — Domesdos’s things to Avoid
The seven cardinal sins of operating system design as seen from 1983.

1 Wilful ignorance

It should seem obvious that if you wish to build a system that works well and reliably, it is a good idea to know its
performance and know its limits rather than sticking bits together following a set of arbitrary (possibly inappropriate)
set of rules and hoping that it does the job. Apparently, this is not obvious.

While a certain amount of care is required {o produce efficient code and there are some trade-offs between effi-
ciency and code size, inefficiency comes mostly from not bothering to quantify the costs of operations and, there-
fore, wasting valuable resources through sheer laziness. Similarly, a system is likely to have a very unpredictable
response if no effort is taken to evaluate worst case (or worst likely case} behaviour

In all the documents concerning the development of Unix, | did not find a single document with calculations of the
cost of any basic operating system function. The authors did not seek efficiency so Unix was inefficient by default.
In all the mass of 1960s theories on ‘multiprocessing” | did not find a single typical or worst case cost calculation to
justify the complex mechanisms proposed for managing "competition for resources” or protecting "critical sections™
these theories relied on asserting the “obvious superiority” of something that was not obviously superior.

2 C programming language

If you are going to program a version of Unix, C would be the obvious language, would it not?

I ' was not convinced. The various documents | had found about the original versions of Unix gave some very
interesting figures on timescales. It appeared that the rewrite of Unix in C took less time than it took to write the
original version in machine code, but not by much, whereas rewriting a piece of software should take much less
time than writing from scratch (because you know exactly where you are going). Furthermore, the first time the C
version of Unix was ported to another machine, it apparently took longer to adapt it than it had taken to write it for
the first time. On the face of it C wasted time rather than saving it.

C represented a specific computer instruction set which was not appropriate and, even worse, it was tied to the
Unix environment and concepts and, therefore, likely to induce typical Unix errors.

Finally it was so ill-conceived that, while it was possible to do really stupid things writing in machine code, writing in
C you could do really stupid things without even knowing it.

3 Object oriented programming

Obiject oriented programming is based on "encapsulation” a fancy term for hiding all the dirty little tricks you do not
wish others to know about inside a hard shell. Furthermore, rather than being explicit about the operations that are
carried out, and how they are done, every operation is implicit, abstract or both: programmers are not supposed to
know what goes in inside an object. The result is that nobody knows how a system created using object oriented
programming works because nobody is supposed to know. It is all deep magic (when it works) or wilful ignorance
{when it does not) -~ a BAD IDEA.

To cap it all, all operations using objects are stunningly inefficient. You need a byte of data from an object? It should
take one machine instruction. With object oriented programming it takes at minimum tens of instructions and can be
several hundred: just to make the system obscure.

4 Virtual memory and virtual machines

These two concepts are entirely independent but, as both require a dynamic address translation unit {a unit that
converts the "virtual addresses’ seen by an applications program into ‘real memory addresses’), they are often
associated.

The supposed advantage of virtual memory was that it allowed the system to degrade more gently when there
was a shortage of memory allowing systems to use less memory. This theoretical view is the result of a dramatic
oversimplification of memory allocation processes. Experience pointed to the opposite conclusion. For example, in
the late 70s when changing from IBM MVT (real memory system) to MVS (virtual memory system) the main memory
had to be doubled in order to handle the same workload. This experience was repeated many times on many
different systems.

The virtual machine model is a fundamental part of the 1960s dogma for multi-user systems. The idea is that each
user ‘sees” a virtual computer that is completely isolated from the virtual computers seen by all other users, thus
providing a naively simplistic security mechanism. This was, of course, totally irrelevant to personal computer usage
where there is only one user and it had already be demonstrated to provide a fundamental security breach rather
than a security mechanism. The other main drawback to the virtual machine model is that most operating system
functions are concerned with transferring information to, from or between tasks - while the virtual machine model
not only made systems more vulnerable, it made inter task communication both more complex and more costly

5 User based security

In 1983, the dominant form of "serious’ computing was time-sharing a multi-user central computer system. The
same scenario formed the basis of the 1960s multiprocessing theories. For this type of system, security was limited
to preventing individual users hijacking, using or corrupting other users’ data. Oddly enough, UNICS, which was
designed as a single user system, had user based security concepts from the start. For a personal computer
(single user workstation) the multi-user problem does not exist, so there is no need for user based security
mechanisms. At best they are merely obstructive and annoying while giving a false sense of security.

Unix had two separate user based security mechanisms: the "process” model of program execution and the file
system owner/group/all and root/notroot concepts.

Processes are closely related to virtual machines. As Unix type virtual machines are more of a security risk than a
security mechanism, the Unix process model merely makes a single user workstation more vulnerable.

The Unix owner/group/all concept of file system security was almost unworkable on multi-user systems as it
assumed a strict hierarchy implying that each user belongs to only one group, and that only one group could be
allowed access to a file. For a workstation it was totally ineffective: where a machine has accessible file store media
{even if you need a crowbar 1o access it) or can be re-booted to a different operating system on a external drive,
removable medium or over a network; the only effective mechanism against data theft is fie encryption {(using
per-file keys NOT per-user keys) and there is no protection against data loss or destruction except for mirroring the
data on remote storage.

6 Synchronisation

In the 1960s a whole edifice of theories was built up on the basis of using synchronisation as a means of providing
mutual exclusion to resolve access conflicts between “processes’. In fact this was misleading. The theories were
not concerned with resolving the conflicts themselves, but concerned with resolving the problems arise when
mutual exclusion is used to try (o deal with these conflicts.

This created a self-sustaining spiral. The basic mutual exclusion theories simply made the underlying problems
worse, which led to the development of synchronisation theories which exacerbated the problems of mutual
exclusion which led to more theories..

In conventional systems, synchronisation mechanisms had also been adopted for signaling between tasks, for
example indicating that data was available for processing. This too had proved to be the source of many
fundamental system design problems.

Avoiding synchronisation and all its associated nasties was, therefore, a primary design aim.

7 Minimalisation

The concept of minimalisation is associated with the “less is more™ and "worse is better” system design philosophies
that developed in the 1970s and eighties to justify increasing idleness and incompetence.

The principle is that by minimalising the operating system functions, the complexity is pushed into the application
programs, making it simpler and easier to design the operating system.

In practice the effect of this approach is rather different. As an operating system should not just be considered to be
a set of core functions but the whole of the support for the applications programs, minimising the core functions
has the effect of increasing the complexity and size of the "higher level functions providing applications support.

It becomes even worse when the minimalisation is compromised. A real minimalist approach to reading data is to
treat input from any device of any type as a stream and have just one 'non-blocking” operating system call to read
a either one byte or a given number of bytes from the stream. As the call returns immediately whether the read is
complete or not, then this call can be used for both checking for input and reading from a file. To read any data that
was not instantly available, the program would have to cycle in a tight loop retrying the call, which in most cases
would be unnecessarily complex and inefficient

The first typical minimalist compromise was to provide two calls: a {non-blocking) call to test whether there is data
available and a (blocking) call to read a fixed number of bytes from the stream.

This did not solve the problems. It did not allow for keyboard input where the user may type characters and then
edit them before hitting ENTER. This meant that the minimalist approach was then further compromised by
introducing switches changing the behaviour of the read bytes function depending on the device and how the
application wished to interact with it, increasing the system complexity significantly.

The end result is that compromised minimalisation not only makes applications programs and application support
software inevitably more complex than providing an appropriate range of core functions, but the minimalised core
functions themselves are very likely to be more complex than more complete set of regular core functions.

Box 2 — Avoiding the things to avoid 1

1 Avoiding wilful ignorance

All the Domesdos system data structures were completely defined (with provision for expansion) before any part of
the system was coded.

In design, the execution time of all critical sections of code was calculated for both typical and extreme scenarios.
For example, the scheduler design was fixed when it was able to schedule 100 application programs, active or
waiting for /0, with a worst case overhead of 50% of the processor time. The performance of the system was
known before it was coded.

All timing critical services interfacing directly to the hardware had known worst case timings.

2 Avoiding C programming language

Conventionally, operating systems had usually been written in assembler (a family of programming languages based
directly on the machine’s instructions: one line of assembler translates into a single instruction). Unix was a notable
exception.

Domesdos was not, however, written in machine code or assembler it was written in pseudo code (the fancy name
for any representation of a program using rules that are made up as you go along) which was then *hand compiled’
even though hands had nothing to do with it.

This ensured that the mplementation was not constrained by the limitation and peculiarities of C or any other
programming language.

3 Avoiding object oriented programming

Any one with a knowledge of the principles of object oriented programming looking at the structure of Domesdos
might think that the attempt to avoid object oriented programming had failed completely: every item in memory,
including jobs, could be considered to be an instance of an object complete with constructor, destructor, and a
variety of methods and properties.

A channel to a file, for example, could be considered to be an instance of a “file channel’ object which added file
specific methods and properties (position, flush, etc) to the methods and properties {read, write, etc) inherited from
the /O channel’ object which itself inherited basic methods and properties (create, destroy, ownership} from the
'memory” object.

The Domesdos approach was, however, very different. Domesdos used "data design’, a slightly earlier concept
which, because of its simplicity, found little favour with academics. Most programming languages are algorithmic or
procedural and not particularly concerned with data. Object oriented programming is the apogee of the procedural
approach as the data is completely inaccessible.

Data design was a programming approach that took, as its basis, the primordial value of data and the relative
insignificance of procedures and algorithms. This is not an ideal approach for calculating the value of Pl or drawing
fractals but, then, as now, most computing outside research laboratories was concerned with data handling rather
than intensive calculation.

The principle of data design was that data structures should be designed to be well defined for all possible states.
For example, rather than writing an algorithm or procedure for suspending a job, the executing and suspended
states of the "job control data structures” are first defined and then the code for suspending a job "writes itself".

There are similarities between the Domesdos use of data design and some of the aims of object oriented
programming. A "file channel block™ had all the data structure of a basic /O channel block”, so that all code that
could operate on an /O channel block” could also operate on a "file channel block”. Likewise, an "/O channel block”
had all the data structure for a 'memory block’, so that all code that could operate on an "memory block® could also
operate on an /O channel block™ and a "file channel block’”.

There are also major differences. Because the data blocks in Domesdos were defined expilicitly, the Domesdos file
system device driver {privileged code) could not only access the file channel block defining a "channel from the
application to a file, but also the associated filing system block (shared between all files open in a particular filing
system), the associated physical device block {shared between all fiing systems on a disk) the associated disk
interface block (for all disks on a particular bus) and the operating system block which held all information common
to applications, device drivers and hardware.

This simplicity led to ridiculous accusations that the system was unsafe: an error in the privileged device driver
would not necessarily be contained. This is absolute nonsense based on the academic view that reliability is a
matter of keeping the system going regardless of how much damage is being done to the data. An error in the filing
system will destroy data: the system will be broken whether or not other system structures are damaged. Intrusive
containment measures simply increase the complexity and, therefore, the increase the probability of there being
errors while reducing the probability that those errors will be detected.

The data design principles used in Domesdos, therefore, provided the useful features of object oriented
programming in an open, clear, explicit, efficient, natural way instead of the closed, obscure, implicit, inefficient, object
oriented way.

4 Avoiding virtual memory and virtual machines

Avoiding virtual memory was not difficult as the hardware did had neither dynamic address translation nor fast
backup storage. The memory management strategies used did not, however, preclude the use of virtual memory.

it would have been possible to implement a virtual machine memory model, by shuffling the contents of memory on
every task switch, but as this would merely have added to the inefficiencies inherent in the virtual machine model, a
real address memory model was implemented.

5 Avoiding user based security

The Domesdos application task model was based on the classic "job” concept. | have seen Domesdos jobs
described as processes, but they certainly are not. If you were trying to be contentious, a Domesdos job could be
described as combining all the advantages of Unix processes and Unix threads while avoiding the drawbacks of
either But | will not describe them that way as Unix enthusiasts are not noted for their sense of humour

Although the hardware did not support any form of protection against accidental or deliberate corruption by one
task of the data belonging to another, Domesdos did have a rights system in the form of "ownership™ and "usership™.
This rights system could have been enforced if appropriate hardware had been available. The “ownership” and
“usership™ of data and program memory blocks made the system self-cleaning provided that tasks did not abuse
the rights system.

A Domesdos job has its own code base and data space. It can spawn independent jobs having no access to the
spawning job’s code base and data space {like processes). It can spawn dependent jobs which, by virtue of the
separation of "ownership” and "usership’ rights, may have their own code base and data space (like processes but
unlike threads) and may access their owner's code base or data space (unlike processes but like threads).

As user rights to files on a workstation are completely unenforceable, files were not flagged with user rights. Per
file encryption, which would have been the only effective data protection mechanism, was considered too complex.

6 Avoiding synchronisation

The earliest versions of Unix did not use synchronisation mechanisms for dealing with access conflicts; they relied
on operating system calls being atomic unless voluntarily suspended. For application programs, where a response
time of some tens of miliseconds is adequate, this is an simple, efficient and safe approach and it was used to a
certain extent in Domesdos.

It is, however, unsuitable for dealing with contention for access to shared data structures between interrupt servers
and other software. Rather than using invasive mechanisms such as disabling interrupts to protect "critical sections”
or, even worse, using symmetric synchronisation mechanisms, Domesdos implemented a range of asynchronous,
asymmetric access mechanisms. For example, if an interrupt server needs to release a scheduled task, it can do it
at any time, even while the scheduler is in the process of rescheduling, without any lost events or any precautions
being required in the scheduler code or the interrupt code to prevent access conflicts. These mechanisms do not
have any ‘critical sections’ and so, in Domesdos terminology, they were called “intrinsically safe’. These
mechanisms were developed specifically for Domesdos but some of the ideas were partly based on the concepts
for asynchronously updating distributed databases that were being developed by the systems group at the
CADCentre, my previous employer.

Synchronisation mechanisms were also avoided when flagging completion of asynchronous processes such as
transmitting or receiving data on an I/O port. Events {intrinsically safe) were used instead.

7 Avoiding minimalisation

Rather than seeking to minimise the operating systems interfaces, Domesdos sought to regularise the interface by
providing a broad, coherent set of basic functions. Using a simplistic analogy, the broader the base, the more stable
the edifice built on it.

The best example was the /0 sub-system. For reading data, separate calls were provided for testing, reading a
single byte, reading a “line’, reading a string of bytes and unbuffered direct reads. There was no arbitrary "blocking /
non- blocking™ behaviour on individual calls: all calls had a timeout parameter from 0 to 10 minutes (or wait forever)
whether or not a timeout had any sense for a particular call.

Because of this regularity, and because the operating system itself handled the timeout, buffering and event
signalling, writing a comprehensive 10 device driver for Domesdos was much easier than writing a primitive 10
device driver for Unix or even MSDOS (or at least it did seem that way to me - some accurate documentation
would have been a help for otherst).

Here is part two of QL-Aided Design. In the
previous article the values for the volume control
network were found by the QL. This article deals
with the resistor/capacitor network attached to
two taps on the control to give tone compen-
sation depending on the volume setting.

Figure 1 shows the circuit diagram of the control.
This is taken from an article entitled "A Two-Tap
Bass and Treble Compensated Volume Control” by
William O. Brooks published in Audio Engineering,
August 1951, pg. 15. VRL is the chain of resistors
whose values were found by the first program.
This article deals with the program to calculate
the capacitor values for C2 and C4. Their values
need to be calculated for differing total resis-
tances of VRL

The bass boost
is given by Ci,
R4 and C3, R5.
wi These remain
fixed and do not
need altering for
different poten-
tiometer resis-
tances. The fre-
quency around
which C1 and C3
work is 400Hz
(the turnover frequency). When the reactance
(resistance to a.c current) of C1 equals the
resistance of R4 the turnover frequency is
400Hz. Above 400Hz the reactance decreases
thus pulling down the voltage at the junction of
R4, C2 and C4 and attenuating the treble. Below
400Hz the reactance of C1 increases effec-
tively boosting the bass. R4 helps to limit the
effects of C1 which on its own would have too
big an effect on treble frequencies. C3 and R5
perform the same bass boost function
on the lower tap of the control.

Tap Res

Input

Bottom tap (R

Fig. 1

The tapping points are fixed at one third
and one sixth of VRI's total value. With
differing values of VR1 the resistances
between them will change. The turnover
frequencies for treble compensation are
3500Hz for C2 and 5000Hz for C4.

A value for C2 needs to be found whose
reactance is equal to that of TopRes (R1) |
when the frequency is 3500Hz and
simlar for C4 and MidRes (R2) when
frequency is 5000Hz.

The formula for calculating the reactance of a
capacitor is:

We already know the frequency, Pi multiplied by
two and the reactance value so if the formula is
juggled then the QL can find the mystery value of
capacitance for us.

Here is the program itself. It has many similarities
to the volume control program and again is written
using SMSQ/E in High Colour mode running under
QPC2. Figure 2 shows the background image loa-
ded into channel 7. As with the previous article
the image was created with Adobe Photoshop
Elements. The two picture inserts were scanned
from the original article in Audio Engineering. Dil-
wyn Jones's website provided the Helvetica fount:
www.dilwyn.me.uk/fonts/index.html

My copy of the Helvetica fount was in a file called
FONTVIEW_ZIP {which | downloaded a few years

ago).

Lines 180 to 250 form a loop to input and check
the resistance value of the potentiometer Lines
390 to 560 calculate and print the values on
screen. Note the use of OVER 1 to ensure that the
text is printed on a transparent strip so as not to
spoil the background image.

ROL
SO0\ BASS YURK-
exsuge DVER (BOTH TiPS)

YaF 3503‘\1’?&59! TR
OVER (ToF HEPS

QIETNES SOOQ UTREBLE TURN-
2 TAP OVER (BOTTOM TAP}
4

[pail

Independent
QL Users Group

World-wide Membership is by subscription only,
Offering the following benefits:
Bimonthly Magazine - up to 52 pages
Massive Software Library - All Free!

Free Helpline and Workshops
Regional Sub-Groups. One near you?
Advice on Software and Hardware problems
Subscription just £14 for Full Membership

PayPal (see QUANTA Web Site),
Cash, Cheques and Postal Orders Accepted

*Now in our Twenty Sixth Year®

Further details from the Membership Secretary

John Gilpin, 181, Urmston Lane,
Stretford, Manchester, M32 9EH (UK).

Tel. +44 (0) 161 865 2872
Email: membership@quanta.org.uk

Visit the QUANTA Web Site
htip://www.quanta.org. uk

10 REMark June 2007
20 WMON2: OPEN #7,con: COLOUR_24, #7

Open a centred window on channel 7 60% screen width by 50% screen height with a light blue
background.

30 Centre_scr 7,60,50: PAPER #7, $84C6: INK #7,0: CLS #7: BORDER #7,1,255
40 1LET Pic$="win2_ Sbasic_Loudness Control_bmp"

45 LET FntlLength=FLEN(_FOUNTS_Helvetica_fnt)

47 LET Base=ALCHP(FntLength)

Replace the default QL fount with the Helvetica fount and apply to channel 7.

48 LBYTES win3_FOUNTS_Helvetica_fnt,Base
49 CHAR_USE #7,Base,0

50 REPeat start

60 BMPSLOAD #7, Pic$: INK #7,0

Load the background picture into channel 7. The image is 615 x 350 pixels.

170 REMark -- GET RESISTANCE --

180 REPeat GetRes

190 Blank__line 7;35;1

200 AT #7,35,1: INPUT #7;"Resistance of Potentiometer in Ohms? ";RPot
205 LET RPot=INT(RPot)

Limit values to between 47000 ohms and 2 million ohms.

210 IF RPot »>46999 AND RPot «<=2E6 THEN EXIT GetRes

220 AT #7,36,1: PRINT #7;"Must be greater than 46999 Ohms and less than or equal to 2 Megohms"
240 Blank line 7,35,1

250 END REPeat GetRes

375 Blank line 7,35,0: Blank line 7,36,0

380 REMark -- SHOW RESULTS --

390 OVER #7,1

Find one third of the total potentiometer resistance (TopTap) and the value of R1 (TopRes) which is in
parallel with C2.

450 LET Toptap=RPot*.33: LET TopRes=RPot-Toptap

Find one sixth of the total potentiometer resistance (BotTap) and the value of R2 (Mid) which is in
parallel with C4.

455 LET BotTap=RPot¥.167: LET Mid=Toptap-BotTap
460 LET FTop=3500: LET FBot=5000: LET w=2¥PI
470 LET C2=1/(w*TopRes¥*FTop)*1E12

475 LET Ch=1/(w*Mid*FBot)¥1E12

Print the results for C2 and C4 rounded up to the nearest whole value with no decimal places.

480 AT #7,2,50: PRINT_USING #7,"C2=####. pF",C2

490 AT #7,3,50: PRINT_USING #7,"Ci=####. pF",Ch

495 AT #7,4,50: PRINT #7, "C1 & C3= 33 nf"

500 AT #7,5,50: PRINT #7,"Potentiometer Res.= ";RPot/1000;" Kilohms"
510 AT #7,6,50: PRINT #7, "Rl= ";TopRes/1000;" Kilohms"

520 AT #7,7,50: PRINT #7, “R2= ";Mid/1000;" Kilohms"

522 AT #7,8,50: PRINT #7, "R4 & R5= 12 Kilohms"

525 AT #7,9,50: PRINT #7, "Top Tap= ";Toptap/1000;" Kilohms"

530 AT #7,10,50: PRINT #7,"Bottom Tap/R3= ";BotTap/1000;" Kilohms"
540 INK #7;$320075: AT #7,14,50: PRINT #7,"Press F5 to repeat”

560 PRINT #7; TO 50;"or F7 to Exit"

570 OVER #7,0: keyscan

580 SELect ON z

590 REMark -- F7 EXIT PROGRAM --

600 ON 2z=238

610 CLOSE #7: WMON2: EXIT start: CLEAR

660 IF z <>248 THEN keyscan

670 REMark -- F5 START AGAIN --
680 END SELect

690 END REPeat start

700 REMark -- WHICH KEY ARE YOU PRESSING? --
710 DEFine PROCedure keyscan

720 REPeat Scan

730 LET z=CODE (INKEY$(#7))

740 IF 2=238 OR 2=248 THEN EXIT Scan

750 END REPeat Scan

760 END DEFine keyscan

770 DEFine PROCedure Centre ser (chnl,xpent,ypent)

780 WHEN ERRor

790 IF ERR_NO THEN PRINT #0, "Channel is not open": STOP:

WMON2

800 IF ERR_OR THEN PRINT #0, "Width or height dimensions greater than 100%": STOP: WMON2

810 END WHEN

820 WINDOW #chnl, SCR_XLIM * (xpent/100),SCR_YLIM ¥ (ypent/100), (SCR_XLIM-{(xpent/100) ¥
SCR_XLIM))/2, (SCR_YLIM-((ypent/100) * SCR_YLIM))/2

830 END DEFine Centre_scr
840 DEFine PROCedure Blank line (chnl,d,a)
850 AT #chnl,d,a: PRINT #chnl;" "

860 END DEFine Blank line

Using the component values found in Part 1 of this
article the one sixth tapping point is between
switch positions 15 & 16 (counting clockwise). With
a 100Kohm control one sixth of the resistance is
16666 ohms. At step 15 the total measured resis-
tance of the chain is around 15770 ohms so to get
the correct tapping point | connected an 820
ohms resistor at step 15 in series with a 3300 ohm
one connected to position 16. The tap is taken
from the junction of the series connected resis-
tors. The one third tapping point is 33333 ohms
which is at position 18. The chain resistance here
was around 31400 ohms and in this instance |
decided not to add any series resistors. Below are
the values for the control.

Switch

position 23 RO = 20567
22 R1 = 16337
21 R2 = 12977
20 R3 = 10308
19 R4 = 8187
18 R5 = 6503
17 R6 = 5166
16 R7 = 4103
15 R8 = 3259
14 R9 = 2589
13 R10 = 2056
12 R11 = 1633
11 R12 = 1297
10 R13 = 1030

9 R14 = 818

8 R15 = 650

7 R16 = 516

6 R17 = 410

5 R18 = 325

4 R19 = 258

3 R20 = 205

2 Rf = 794

1 0 (tied to ground rail)

Figure 3 shows the results of the calculations for
a 100Kohm potentiometer. The completed control
iIs shown in figure 4. Part of the resistor chain can
be seen and the compensation capacitors sol-
dered to a small piece of Veroboard. At top right
is one of a pair of No. 76 triode valves used in my
preamplifier

Fig. 4

It is possible to increase or decrease the level of
bass and treble boost by altering some of the
component values. To get more bass boost
decrease the values of R4 and R5 and increase

George Gwilt writes: Letter to QL Today re
Norman Dunbar’s Article on Assembler - Part 24

It was with some trepidation that | started reading
Norman's latest article on Assembler since it was
devoted to my SETW. What brickbats would be
flying? In the event | think Norman let me off lightly.

However, there are one or two comments which
might be useful to anyone following Norman’s
instructions.

L

A very minor point is that the name of the
zip file for EasyPEasy is peasp02.zip. (Only
one s)

It is true that on starting SETW you need to
be sure that you are going to get non
relocatable output if you are going to use
GWASL to assemble it. The parameter -abin
will ensure that However, this choice can
also be made by configuring SETW |
checked that the version on my web site is
already configured to give the right output.
Hence leaving out -abin would do no harm.

In the section on "The Main Window" Nor-
man advises you to read the prompt care-
fully before pressing ENTER because
‘there’s no going back!" This is the first
brickbat. I have myself found it annoying that
you cant go back to alter the number of
objects or windows. Part of my solution was
to allow a quick way of aborting the pro-
cess. Pressing ESC will often allow you to
stop the program. Otherwise you would
have to plough through the remainder of
what could be a large number of questions

the values of Cl1 and C3. The
combination of components should be
chosen to give the same turnover
frequency (400Hz). To increase the
treble boost raise the values of C2 and
C4.

| have been using the control for over
a year now. The effect of the control is
quite subtle unlfike a normal tone
control, and when listening at low
volume levels the overall tone content
of the sound appears unchanged. At
higher levels the control has a lesser
and lesser effect on tone.

Fig. 3

before ending the process to start again.
The other part of my solution was to make it
relatively easy to alter what output is even-
tually produced.

| was amused at Norman's instructions to

~ sef the size of windows according to the

little box at the bottom of the screen. | must
confess that | very rarely use that and sim-
ply rely on eye to check the size of win-
dows and position of objects. It might be
useful to know that the size of the informa-
tion window is constrained by SETW to be
large enough to hold the biggest of its
objects.

The width of "Hello World™ is 66 pixels. Nor-

- man says it is 72. My guess is that he typed

Hello World", or possibly one of "Hello
World ", and " Hello World'.

. Norman was using an operating system with

GD2 colours. On a more primitive machine
SETW works slightly differently. In this case,
the colours for windows, borders and text
items must all be chosen from the mode 4
set presented. Pressing ENTER immediately
for every colour would result in them all
being white! The default colours for GD2 are
in fact the system palette entries set up for
GD2. For example the colour in hello_asm
for the border of the information window
comes out as 526, or $020E, which is
defined as spinfwinbd (Information window
border). This is not a colour in itself but is an
entry to the system palette colours of which
there are four sets. These, by default, are

set to be combinations of the QL 4, black,
red, green and white, but these can be
redefined by a user When SETW is finished
the window it has produced is shown with
system palette number 0 being used.

7. Finally Norman says that the result,

hello_asm, appears "On rami, in my case".
Actually all output always goes to rami_.

In one of his 'Gee Graphics' articles, Herb Schaaf
asked if anyone had a routine to generate Ran-
dom numbers. After unsuccessfully trawling the
net, | decided to write one of my own. This proved
to be much more difficult than | first thought, as
any ‘seed used in an algorythm will always pro-
duce the same number sequence from that seed.
So if you reset your unexpanded QL and run a
program at boot time you wil always get the
same random’ sequence.

By definition, a random number should give a uni-
form spread over its entire range and be totally
unpredictable. Early methods therefore used the
system clock to seed the algorythm, as there is
no way of predicting when the clock will tick..So
this was the method | used. All the program does
is to set a FOR loop running, and interrupt it when
the clock ticks. (Set the counter ‘ct’ to slightly
more than the number of loops your machine can
do in one second). Obviously this program should
only be used at occasional intervals, as you can
otherwise bias the results by guessing when the
loop will start.

Another method used by Apple sets the clock
ticking and interrupts the counter when you hit a
key. Most computers now seed the random
number generator at start-up, then reseed it
periodically from the previous seed. Indeed the QL
uses the date tick if you use RANDOMISE DATE.
But the QL Randomise function contains a bug for
which Mark Knight gave a fix in his QL Today
“True_Randomise’ article.

My method waits for you to hit a key before
producing the next random number, it is not a
Formula One model. It merely demonstrates a very
simple generator to program. You can see how
random the output is by looking at the dispersion
of the vertical lines. If you only use it every few
minutes it will be very accurate!

However, SETW can be set to put any of
the output files to some other directory as
well. In fact the SETW on my web site is
configured to send the _asm files to
‘winl_ass_pe_". If the file with name
'winl_ass_pe_hello_asm’ can't be opened,
SETW will say so otherwise the information
will appear there too as well as in raml_.

If you want your random number to lie within a set
range, scale your range to that of the computer,
using a simple ratio. This takes but a few
SuperBasic statements.. If you find QL Integer
size limits normal QL random number size, just
convert the random numbers to strings and
concatenate them.

The British Premium Bond generator, ‘Ernie’, used
coupled Neon diodes to get the random winning
numbers, it having been proved that this device
produced a truly random 'White Noise' series
when sampled. Another important use of random
numbers is in nuclear warfare : The Test Ban
Treaties forced countries to produce atom bomb
simulators to test new modifications to weapons.
These simulators need perfectly random numbers
to predict the chain reaction where neutrons are
ejected randomly Some algorythms use
rounded-off lost’ digits in suitable pseudo-random
calculations to provide seeds. These have the
advantage of being virtually instantaneous, but are
still 'somewhat’ predictable. Does anybody know
what method the QL uses?

Being a transcendant number, there is no known
formula to calculate Pl, so you could get extract
random’ numbers from the Pl sequence, as long
as you don't know where in that sequence you
started. This 'Viete Method' uses the surface of
polygons to obtain Pl by iteration very efficiently. If
you want a challenge, try modifying the program
to produce Pl to 100 decimals or more. This would
of course require you to write suitable multi-
precision Square-root and arithmetic routines..
(Maybe | shall do some for a forthcoming maga-
zine). Most other routines to calculate Pl are
horrendously slow..

Happy Lucky Dipping

Editor: As the listing is very short, we decided to
print it on the next page.

100 ::

110 REMark PIE_bas by S.Poole. v7june 2008.

120 CLEAR: OPEN#1,con_16: WINDOW 512,256,0,0: BORDER 1,4
130 CLS: RANDOM: CLS: WINDOW 256,206,256,0: PIE: STOP
140 :

150 DEFine PROCedure RANDOM

160 REMark Original DIY method:

180 REMark Scale is larger than highest random number:
185 REMark Ajust it to fit your screen and machine speed:
190 SCALE 128000,0,0: I$='': REMark 200000

200 REPeat loop

210 REMark When QL clock ticks stop the counter:

220 d1=DATE: FOR ct=1 TO 2E6: IF DATE«>dl: EXIT ct

230 AT 1,1: PRINT ct,: LINE c¢t,0 TO ct,ct

235 :

237 AT 22,1: PRINT 'Hit a key to start the counter or q to quit:'
240 I$=INKEY$(#1,-1): IF I$=='q': EXIT loop

250 END REPeat loop

260 END DEFine

270 :

280 DEFine PROCedure PIE

290 CLS: p=2: n=.5: r=SQRT(n)

300 FOR x=1 TO 12: p=p/r: r=SQRT(n+n¥r): PRINT\p,X,
310 END DEFine

320 ::

This issue of QL Today comes with the bonus of
8 exira pages for our readers. This is possible
because Jochen wil be able to send it from
Austria where the
postage costs are

At the moment we are trying to be fair to all our
contributors to ensure they do not have to wait
too long for their articles to appear This means
that some of our regular writers may not appear in

lower than in Ger-
many and the
Netherlands.

Once again much
of the magazine
is taken up by

individual issues of
the magazine. We
hope this will not
put off either regu-
lar or occasional
contributors writing

Tony _Tebby's con- for QL Today.

fributions. Very slowly we are

Reactions to the now clearing up the

last issue indicate backlog of copy

that our readers are enthusiastic about these 54 o ensure

articles, which contain material sufficient material for issues 3 and 4,

that has never been published
elsewhere.

The articles do, however, give us
a few logistical headaches at QL
Today because we want 1o
ensure that other contributors are
well represented in the magazine.
For this reason we are very happy
to be able to publish the extra
pages in this issue.

we shall be pleased to receive further
contributions. In particular short
contributions would be very welcome,
not only as a way of increasing the
number of contributors per issue, but
| also to enable us to fill the last few

pages in any one issue with worthwhile
material.

)

Kaiser-Wilh.-Str. 302 D-47169 Duisburg
http://SMSQ.J-M-S.com SMSQ@J-M-S.com

QMENU Version 8! XMAS-OFFER!

It has taken a long time ... but here it is: QMENU Version 8 and The Menu Extension Version 8
Most Pointer Environment users already know it: the Menu Extension. It is an interface which provides
ready-made menus like file-selector boxes, simple-choice-menus or select from a list. QMENU is a
guideline how to use it from BASIC, Machine code or maybe other programming languages which allow
Machine code interfaces. It explains how to use it with various examples in BASIC and Machine code.
You are allowed to use it in your own programs and you may even sell it under license. The Menu
Extension also contains the Scrap Extension (“clipboard).

Mutlti-column menus, file-select with tree and view option, Fileinfo |l support - just the FileSelect menu
on its own is a beatiful extension to your system. _
QMENU has not been advertised for quite a while, as the last version 7 manual was not updated in the
past few years, while the Menu Extension itself got updated here and there. However, many updates in |
the Menu Extension and several user inquiries made me think about releasing an updated version o
QMENU. The manual has been completely revised and reflects all the minor and major changes and
add-ons: from the assembiler-side, from the BASIC programming side, and also from the user’s side. You
get a 42-page printed manual, a floppy disk with updates keys, updated help texts for QD Hyperhelp and |
updated and new examples.
Please note: The Menu Extension from version 7.65 onwards works only under SMSQ/E V2 (e.g. QPC2
or systems with high-colour screen drivers). If you run the “old” QL Pointer Environment, you should §
stick to your old Menu Extension. English only (a German version of MENU__rext is also on the disc, bu
no German documentation).

Some of the changes since version 7.04 (the last "officially” documented one) are:

DSEL {Directory Select) allows up to 10 devices a
RSTR (Read String) has additional parameters (which force the values entered to be ints, floats, not |
empty, disables ESC etc.) It can also be used to enter hidden passwords.
Timeout feature has been added to RPER (Report Error) and ITSL (Item Select).
Some menus have got a MOVE facility.

New menu SYSS (System select) provides fast selection of items from the Hotkey buffer history, |
currently running jobs, Things in your system, Executable Things in your system). Just one call and the
System Select procedure collects all the information for you and provides it in a list - very easy selection. |
Hotkey buffer history now available in the file-select instead of cycling through the “previous” ones.
All this, bug fixes and more - available NOW.
To order, please send letter, fax or E-Mail or place an order through the secure order form on
SMSQ.J-M-S.com (you will find screenshots on the website too).

Special XMAS offer, valid until 15th of January 2010:
QMENV Update: EUR 15.90 including postage {instead of EUR 19.90).

We accept VISA, MasterCard & Diners Club online and offline! Amex only by mail or fax, not email!
New payment methods for our customers: Money transfer to "local” account in many countries!
e Deutschland: Jochen Merz, Account 493 50 431, Postbank Essen, BLZ 360 100 43
o Osterreich: Jochen Merz, Account 85055317, PSK Wien, BLZ 60000
* Switzerland: Jochen Merz, Account 60-690080-4, PostFinance, Clearing-Nr 09000
¢ The Netherlands: Jochen Merz, Gironummer 3258439, Postbank NL Amsterdam
¢ and from all other countries in EUR with IBAN and BIC to account
Jochen Merz, Deutsche Postbank AG. IBAN: DE21 3601 0043 0611 1004 37 / BIC: PBNKDEFF 360
¢ UK customers can pay in £ {convert EUR prices above to £ by multiplying with 0.92) to
Jochen Merz, Account 83795395, Citibank UK, Sort code 30-00-45 pen W
or send cheques in £ - no feg for UK sterling cheques! ; ayab\e {0 JoC
e US customers can pay in US$ (convert EUR prices above to US g PaY e _
by multiplying with 1.52) - no fee for US cheques in US$! che ue %zra'licdeﬁttilalré%f gfhggr? égfgnge e

.

s smicnne -
i

Come to Vienna!

International QL-meeting 2010 in Prottes (near Vienna).
Thursday, 3rd (bank holiday) to Sunday, 6th of June 2010.

Gerhard Plavec, the organiser, has already placed a lot of useful information on his website
http://kuel.org (German, French and English)

He plans to turn the Saturday into the main day, but if the majority of visitors prefers to come on
Friday, it can easily be changed.

On his website, you'll find already loads of information about accomodation (including staying at
Gerhard’s place), even with a tent ... he can also provide electricity for visitors who come with their
motor homes. In both cases, please contact Gerhard in advance.

Prottes can be reached directly by car and train, and, of course, with every travelling method via
Vienna (airport or ship, e.g. from Bratislava).

There are several tourist sites nearby (not to mention Vienna itself). The railroad museum in Strasshof
(very close) will be open all four days, and they will even get steam engines going on Sunday. If there is
enough interest, Gerhard may ask if they would do it on the main day (see above, most likely Saturday
or Friday).

Gerhard can be contacted via email: gerhard.plavec@gmx.at or phone +43 699 81856765

We are informing you early to ensure you can fit the meeting in with other holidays or journeys ...

50 let’s turn this event into a big event, kind of re-union of QLers who have not met for a long time!

|

We plan to have the next issue ready for you towards the middle of March.
As always, it depends on how quickly we get reviews, articles etc.

The more material we get and the sooner we get it, the quicker the next issue will be in your
hands, and the better it will be. We depend on your support.

